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We use mathematical modeling in decision analysis to help

A

us obtain a "better'" profit lottery than we can assess directly.

The concept of the authenticity of probabilities is introduced to

A

define the measure of 'goodness" of the profit lottery. The role
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of modeling is to simplify our assessment task through the

f' decomposition of the profit lottery. However, budgetary constraints

force us to make approximations in the modeling process and thereby
cause us to misstate the profit lottery. The models used in a
decision analysis should be regarded as subjective expressious of
our uncertainty rather chan as objective descriptions of the
real-world.

A methodology is presented that quantitatively relates the
modeling approximations made in a decision analysis to the results

of the analysis.
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INTRODUCTION

To the Wizard and to the Clairvoyant, decision mairing is a
simple matter. The omnipotent Wizard has the power to change
anything in the world to suit his own taste. To him, there is no
such thing as a decision problem; he merely causes to happen what-
ever he wishes. The omniscient Clairvoyant, although lacking the
Wizard's power to change events, possesses the power to foretell
the future perfectly. To him, there is no uncertainty in decision
making; he merely chooses the course of action whose consequences
he most desires.

By contrast, we lowly mortals cannot pretend to possess the
Wizard's or the Clairvoyant's powers in decision making. But
there is a superbeing whom we do try to emulate -~ the Elicitor.
The Elicitor can neither change nor foretell events and he is
therefore uncertain about the future. However, he possesses the
special ability to fully and accurately express his uncertainty in
the form of probability statements. In a decision problem, the
Elicitor assesses his probabilities on the future consequernices of
the alternative courses of action and, using his utility Zunction,
calculates the expected utility for each alternative. He then
chooses the course of action having the highast expected utility.
He 1s not assured that his decision will lead to the most desired
outcome, but he is confident that his actions are wholly

1




consistent with his preferences and with his uncertain under-
standing of the future.

In decision analysis, seeking to imitate the Elicitor, we
likewise make probability statements about the future consequences
of our actions and calculate the resulting expected utility for
each alternative. But we uafortunately do not possess the
Flicitor's ability to directly assess probabilities that fully
and accurately express our uncertainty. Recognizing this, we use
modeling to help us obtain the requisite probability statements.

Modeling is the source of most of our dissatisfaction with
the results of particular decision analyses. While we do not con-
test the validity of decision theory, we often complain that the
models used in a decision analysis are "too simplistic" or "not
realistic enocugh" or "not believable'" and we therefore regard the
results of the decision analysis with doubting eyes.

How should we deal with our dissatisfaction about modeling in
decision analysis? What do we mean by "goodness'" in a model and
can we quantify it? Can we, for instance, define an index of
"realism" or of "credibility" on models? How should we choose
among alternative models? For example, can we use the notion of a
probability-space of models? And how should we decide when to do

more modeling? For instance, could we use the concept of the value

‘g of perfect modeling as an analogue to the value of perfect

information?
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In this dissertation, I offer a way to think about modeling
in decision analysis so that we can deal with our dissatisfactions
meaningfully. Chap!:er 1 provides a philosophical perspective on
the role of modeling in decision analysis. Chapter 2 presents a
methodology with which we can quantify our dissatisfaction about
the modeling in a decision analysis and relate it to the results
of the analysis. Chapter 3 1s an example illustrating the use of
the methodology and Chapter 4 is an extension of the methodology

to stochastic models.




e sl i iy,

T R L

oy /e ST

Y W v N Ty

e s e ol

L

18 S AT I IR ]

CHAPTER 1

A PERSPECTIVE ON MODELING IN DECISION ANALYSIS

1.1 Introduction

In theory, we do not need to use mathematical modeling to
perform decision analysis. An:lytically, a decision problem is
defined by two variables: a decision variable d

s represent-~

ing the alternative courses of action open to us, and an outcome

variable v , representing the relevant consequences of our

actions. In decision analysis [7,6] s We need only assess for
each value of d the conditional probability distribution on v
given d , {v|d,s} , called the profit lottery and state our

risk preference vy specifying a utility function on v » u(v).

Then, we can calculate the expected utility of each profit

lottery:
Y4 = fv {v]ld,s} u(v)
and identify that value d* of the decision variable correspond~
ing to the profit lottery with the highest expected utility (i.e.,
the most preferred profit lottery). The optimal alternative is
the one specified by d*.

Although superfluous in theory, modeling is nevertheless

indispensible to decision analysis in practice. 1In theory, we

assume that we can directly assess the profit lottery, but in

4




practice, we are unable to do so satisfactorily. Consequently,
we turn to modeling to help us obtain the profit lottery.

Our ideal in decision analysis is not to construct the
perfect model, but rather to obtain the authentic profit lottery --
the one that accurately expresses our uncertainty about the future.
(See Figure 1.1 for a conceptual "roadmap".) We do not have the
Elicitor's ability to assess the authentic profit lottery directly,
80 we employ the modeling strategy, which would yield the authentic
profit lottery if successfully executed. However, budgetary con-
straints force us to make approximations in the modeling process;
consequently, the profit lottery that we obtain through modeling is
not the authentic profit lottery. The modeling approximations,

then, are the sole source of our dissatisfaction.

1.2 Aatheutic Probabilities

We use modeling in decision analysis because we do not believe
that the directly assessed profit lottery is gcod enough.

But what 18 "goodness" in a profit lottery? The profit lottery,
as a subjective probability statement [},5,16] » 18 the quantified
expression of our beliefs about the likelihood uf occurrence of real-
world events beyond our immediate perception. A good probability
statement is simply one that accurately and fully expresses our
beliefs. To denote a good probability statement, I use the term
"authentic", which the dictionary defines =s "worthy of acceptance

and belief."”
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Authenticity 1s not the s'me as trueness. The only test of
goodness of a probability statement is whether or not we believe

it, not whether it is true or false. 1Indeed, it is not even

meaningful to speak of a probability statement as being true or
false.

Compare, for example, the two statements: "It will rain
tomorrow." and "The Probability of rain tomorrow is 3/4." The
first statement is an assertion about the real-world and is elther
true or false. We can determine its goodness (i.e., its trueness)
by observing the world (tomorrow). The second statement, on the
other hand, does not describe the real-world, but instead
éxpresses our uncertainty about the world. It makes no sense to
say that it is true or false, but only that it ig authentic or
inauthentic. We cannot ascertain its goodness (1.e., its authenti-
city) by appealing to the real-world, but rather only to our beliefs.

The authenticity of a probability statement depends on our
state of information. A probability statement that we accept as
authentic based on one set of information may become inauthentic
when we receive additional information. For example, if we observe

rainclouds gathering overhead, our authentic probability for rain

tomorrow may change.

But how do we obtain authentic probabilities? Clearly, the

authentic probability for .ui event must reflect all of the informa-

IS VL, - Ty L S

tion we possess relevant to that event. Therefore, to essess the

7
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authentic probability, we must review our entire state of
information pertaining to the event and Judge the likelihood of
its occurrence on the basis of that information.

This is a formidable task for almost any event. Siace we
believe that the world is highly interdependent, our state of
information 1z an extensive and complicated web of knowledge.
Hence, we must retrieve, organize and Process a large amount of
information to assess an authentic probability.

Consider, for example, the probability that the winner of
the 1980 U.S. Presidential election is a member of the Republican
Party. To assess the authentic probability for this event, we
must consider every set of circumstances that might lead to its
ouzsurrence. We must review our knowledge of historical trends,
of the current state of the Republican Party and of the intentions
and qualifications of potential candidates. We must relate the
futhentic probability to our uncertainty about intervening events,
such as the outcome o7 the 197¢ election and the possibility of
war cr depression before 1980.

We encounter two major difficulties in trying to assess the
authentic probability. First, we find that the task of consider-
ing everything that might affect the outcome of the event is
seemingly endless. And second, we find it virtually impossible
to perform the requisite processing of the information without

external computational assistance.

8
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Let us Imagine the existence of a person, called the
Probabilist, who is capable of performing upon re‘jjuest any
calculation using the rules of probability calculus (e.g., Bayes'
Theorem, expansion, change of variable). Tnen, we can state the
following operational definition of authenticity: The authentic
probability for en event is the one we would obtain if we could
spend an unlimited amount of time in introspection and if we had
available the services of the Probabilist.

It should be readily apparent that the authentic probability
is, in most cases, an unattainable ideal. Even after lengthy
introspection, we can almost always think of something relevant that
we have not yet considered. And, of course, we do not possess the

computational capabilities of the Probabilist.

1.3 Operative Probabilities

Since we cannot obtain authentic probabilities, we must use the
probabilities that are based on only partial comsideration of our
state of infarmation. These probabilities I call "operative".

As a matter of notation, we can represent our incomplete
consideration of the state of information 4 as C(4). Then, our

authentic and operative probabilities for event E are:

{E|4} = p, Authentic probability

{E|C(é)} =~ P, Operative probability

e T .
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It 1s useful here to distinguish between two “inds of
uncertainty. The first kind, called primary uncertainty, is the
uncertainty due solely to the finiteness of our state of informa-
tion and is expressed by authentic probabilities. The second
kind, called secondary uuncertainty, is the additional uncertainty
due to the incomolete consideration of our state of informatlon.
Whereas primary uncertainty can be resolved only by recelving more
information, secondary uncertainty can be resolved by further
introspection and calculation.

Conceptually, we can represent our secondary uncertainty as
a conditional probability distriiution on the authentic probability

ylven partial consideration of our state of information:
{p,|c(8)}
Then, the mean of this distribution is the operative probability:

p, ={p,[c())

and the variance vaa|C(A)) is a measure of how much secondary
uncertainty remains to be resolved and thus how "close" the opera-
tive probability is to the authentic probability.

As we spend more time ir introspection and calculation, we
reduce the amount of secondary uncertainty and thereby make the

operative probability converge to the authentic probability.

10
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For example, the operative probability of a Republican

1 victory in the 1980 election that we asrign after only a moment's
| thought is “far" from the authentic probability; that is, since

§ much secondary uncertainty remains, the opera:ive probability may

change significantly with further introspection and calculation.

On the other hand, the operative probability that we assign to
getting a head on the next flip of a coin is very "close" to the
authentic probability because 1ittle secondary uncertainty remains

and further cons!deration of our state of information is unlikely

E to markedly change the operative probability; in this case, we

can say that the operative probability is virtually authentic.

But what difference does it make how "close'" the uperative
probability %s to the authentic probability? If we must act with-
out further consideration of our state of informution, then it
makes no difference how ''close' the operative probability is to the

; authentic probability. However, 1f we are able to further consider
our state of information before acting, then the "farther" the i

operative probability is from the authentic probability, the é

1

;

greater the value of doing some more introspection and calculation.

Yor example, suppose that we are offered a cholce between a
sure $60 and a lottery ylelding $100 if a specified event occurs

j and nothing otherwise; the event may be either a Republican victory

11
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in the 1980 electicit or a head on the next flip of a uoin.

Suppoce further that our nperative probahility P, of a 1980
Republican victery is ldentical to our operative probability q,
of a head on the vext flip of the coin, but that P, is "far"

from the authentic pro”ability while 9, is virtually authentic:

1 0 <P, <1

o lce)} =

0 ctherwise
{g lc)} = &q, - %)

Then, if we are prohioited from doing further introspection or
calculation, it does not matter which event is used in the loctery;
in either case, the expected value of the lottery 18 $50 and our
decision i1s to choose the sure $60. However, if we are permitted
the opportunity to introspect and calculate before choosing, it does
matter which event is used in the lottery. If the lottery depends
on the coin flip, no amount of introspection or calculation wiil
change the expected value of the lottery, so we would always take
the sure $60. In this case, further introspection and calculation
has no value. On the other hand, it does have value if the lottery
depends on the 1980 election. 1In this case, further introspection
and calcnlation may reveal that the authentic probability is such

12
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that we would choose the lottery instead of the sure $60
(pa >.6). The expe-ted value cf the decision glven complete

introspection and calculation is:

e [l le@) e,
pa
- (Ceca. + [ ! 100p 4
J Pa Py Py
0 .6
= 36 + 32
= $68

Therefore, the expected value of complete intruspection and
calculation (i.e., the value of obtainir» the authentic probability)
is $68 -~ $6n = $8.

The value of further consideration of cur stace of information
is analogous to the value of recelving additional information. In
both cases, the value depends on how much uncertainty remaias to be

resolved and on how much is at stake in the decision.

1.4 The Modeling Strategy

In decision analysis, then, we want the authentic profit
lottery -~ the one and only probability distribution that accurately

expresses our beliefs about the future consequences of our actions.

13
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But in most decision situations, our state of information about
the decision environment is much too complicated for our simple
human minds to consider completely.

For example, suppose that our decisir is whether or not to
manufacture and market a new product. We might be able to identify
scores of factors that affect the outcome of our decision, including
the behavicr of our competitors, the general economic conditions,
the effectiveness of our advertising, the costs of raw materials,
the efficiency of the manufacturing process and the regulatory
behavior of the government. The authentic profit lottery must
express our uncertain understanding of how each of these factors
affects our profit and how each will behave in the future.

Clearly, we would be hard pressed to process all of this

information mentally. Consequently, the profit lottery that we

assess directly 1s very "Zar" from the authentic profit lottery and

the value of resolving our secondary uncertainty is high.
Recognizing this, we turn to modeling to halp us resolve our
secondary uncertainty. In essence, the modeling strategy 1s one of
divide-and~conquer; in modeling, we decompose the profit lottery
into smaller pieces that our simple minds can handle comfortably.
Then, we rely on external means of calculation to reassemble the

Pleces to obtain the profit lottery.
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The modeling strategy is as follows:

1. Identify a set of real-world factors on which profit

is btelieved to depend, representing them as state variables,

denoted by the vector s.

2. Encode our uncertain understanding of the dependence

relationsii!y between profit v and the decision and state
variables d and s as a conditional Probability distribution
{vld,g,é} .

3. Encod2 our uncertainty about the future behavior of the

stite variables as a probability distribution {glé} )
4. Using external means of calculation, determine the

profit lottery via the expansion equation:

{vld,s} = f{vld,g,é}{glé}
8

Note that the modeling strategy does not relieve us of the
necessity to assess probabilities. Rather, it merely substitutes
for the direct assessment of the profit lottery the assessment of
Probabilities on the state variables and on the dependence relation-

ship.

The key to success of the modeling strategy, then, is select-

ing a set of state variables such that we can handle the resulting

assessment task satisfactorily.

15
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If we can assess virtually authentic probabilities on the
state variables and on the dependence relationship, then the
modeling strategy would yield the authertic profit lottery,

since the expansion equation 1s tautologically true.

1.5 The Abridged Modeling Strategy

Unfortunately, we can seldom fully execute the modeling
strategy because we are limited by economic constraints on the
decision analysis itself. If a decision analysis is to be worth-
while, its cost must be small relative to the resources allocated
in the decision. Therefore, in any decision analysis, we must
strictly limit the time and effort devoted to cbtaining the
profit lottery.

Full execution of the modeling strategy, by contrast, would

require much time and effort. Generally, the assessment of

st o

virtually authentic probability distributions on the state variables

and on the dependence relationship would be very time~-consuming.

Furthermore, because we cannot analytically perform integration

over an arbitrary continuous function, as required by the strategy,

we would need to perform the integration numerically, which would

also be exceedingly expensive.

16
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Recognizing that we are unable to fully execute the model-
ing strategy within the budgetary constraints, we abbreviate it.
The abridged modeling Strategy is as follows:

1. 1Identify a set of real-world factors on which
profit is believed to depend, representing them as state
variables, denoted by the vector 8.

2. Identify a deterministic function g that
approximates the dependence rerationship between profit

v and the decision and state variables d and s

v = g(d,s)
The function g 1s commonly called the "model".
3. Approximately encode our uncertainty about the
future behavior of the state variables as a discrete

probability function p(s).

4. Using external means of computation, calculate

the profit lottery via the expansion equation:

tvd,8} =] 6(v - g(d,s)) p(s)
S

The abbreviation of the modeling strategy results in the
familiar decision tree representation of the decision problem.

[}3] (See Figure 1.2) The discrete steps of the state variables

are represented as "branches" at the chance nodes of the tree and

the profit assigned to each "tip" of the tree is given by the

deterministic function:

v = g(d,s)
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Figure 1.2: Decision Tree Representation
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The degree to which we Must restrict the number of state
variables and the level of discretization of their distributions
depends, of course, on the budgetary constraints of the particular
decision analysis. Usually, the restriction is quite sSevere
because the size of the decision tree grows geometrically with the
number of variables and with the number of discrete steps in the
distributions. More specifically, if we have N state variables
and if we discretize the i-th state variable into m, steps, the
number of tips k 1in the decision tree for each decision alterna-

tive is given by:

For each of the k tips, we must evaluate the function v = g(d,s)
to determine the Profit associated with that tip and we must multiply
together N probabilities to find the probability corresponding to
that value of profit.

Clearly, the amount of computation required to solve a decision
tree can easily become prohibitively large. For example, if we have
ten state variables and if each is discretized into five steps, our
decision tree will have nearly ten million tips for each decision
alternative. Solving this tree would tax the capabilities of almost

any computer and would incur an exceedingly high cost.
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Consequently, to meet the budgetary constraints, we
deliberately ignore our uncertainty about some of ti» state
variables in the interest of computational economy. We select
from the state variablcs only those very few that have the
greatest effect on profit, as revealed by sensitivity analysis,
and designate them as aleatory variables. [19,27] We assess the
probability distribution on each aleatory variable and discretize

it into only a few steps. We designate the remaining state

variables as non-aleatory and, disregarding our uncertainty about
them, fix each of them at a single representative value. In effect,
we discretize each non-aleatory variable into just one step instead
of into several. Typically, we have fewer than ten aleatory
variables and we rarely discretize a distribution into more thea
three steps.

The profit lottery that we obtain through the abridged modeling
strategy 1s not the authentic profit lottery. The profit lottery

from the abridged modeling strategy is:

{v|a,8} =] 6(v - g(d,8)) p(s)
8
From the full modeling strategy, the authentic profit lottery is:

{v|d,s} = I{vld,g,é} {s|s}
8
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The discrepancy between the modeled and authentic profit lotteries
is due solely to the two approximations made in the abridged
modeling strategy:

1. {v]d,s,s}

1]

S(v - g(d,s))

2. {s]s}

R

p(s)

I call the first the Dependence Approximation and the second the
Distribution Approximation. In Chaptar 2, I present a methodology
for estimat:ng the size of the discrepancy in the profit lotteries

caused by these two modeling approximations.

1.6 The Subjective Nature of the Model

In the abridged modeling strategy, we attribute all of our
uncertainty about profit to our uncertainty about the state variables

and none to uncertainty about the dependence relationship between

profit and the state variables.
This arrangement, although motivated by budgetary considerations,
1s also conceptually appealing because 1t mirrors the way in which we

visualize the world. According to our Western world~view, we believe 1

that phenomena do not occur spontaneously, but are caused or influ-

ot e

enced by other phenomena; hence, we "explain" the occurrence of a
phenomenon by establishing the occurrence of its antecedeats. Further-
more, we believe that the interactions among the phenomena are

goverened by permanent rules of relationship (i.e., natural "laws").
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It is the role of science to increase our understanding of the
world by discovering and codifying these rules of relationship
through the careful observation of the universe.

Applying this world-view to the decision situation, we
believe that a particular level cf profit does not simply happen,
but 1s caused by certain extraneous factors. We believe, then,
that there exists a set of state variables S that completely

determine profit through a fixed real-world relationship W :

v = W(a,S)

I call such a set of state variables "complete".

We believe that, 1f we could predict the future behavior of
the state variables S and if we knew W , we could then predict
profit exactly. We are thus led to idealize the modeling process.
In the idealizced modeling scheme, we determine W by examining
objective real-world data and encode our uncertainty about the
future behavior of the state variables as a probability distribution
{s|4}. Then, through the relationship W » this uncertainty about
the state variables translates directly into uncertainty about

profit, expressed as the profit lottery:

tv]d,8) = Lew - W(4,8)) {ss}

The abridged modeling strategy mimics this idealized modeling
scheme in that no uncertainty is attributed to the dependence relation-
ship between profit and the state variables. Rather, all uncertainty

22
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about profit is attributed solely to uncertainty about the state

3
4

variables s acting through the deterministic model g' %

v]d,8 = ] 6(v - 8(d,8)) ple)
8 :

But this arrangement is a misrepresentation of our beiiefs.
The modeling that we actually perform in a decision analysis falls
short of the idealized modeling scheme in two major respects. First,
the set of state variables & that we specify for use in the model-

ing strategy 1s generally not complete. Typically, in a complex

O

decision problem, although we can identify many different factors

that influence profit, we select as state variables only those few

that have the greatest effect on profit in order to restrict the
assessment and computational costs. Consequently, we believe that
profit depends not only on these specified state variables but on
other, unspecified, variables as well. Even if we knew the value of
each specified variable, we would remain uncertain to some extent
about profit because of the effects of the unspecified variables.

] Let us represent the unspecified variables as the vector Z.

Then g and z together constitute a complete set of state variables:

(8,2) = S

3 Assume for the moment that we know W » the real-world re"ationship

% between profit and this complete set of state variables, v = W(d,s,z).
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Then, our uncertainty about the dependence relationship between

profit v and the specified state variables s 1is:

2,5} {_Z_'_S_,A}

{vld,s,s} = f {v]d,s,
z

= j 6(v - W(d,s,z)) {z|s,s}
z

However, we generally do not possess sufficient real-world

data to determine W ; this 1s the second respect in which we

fall short of the idealized modeling scheme. Although we believe
that there does exist a fixed real-world relationship between

profit and the complete set of stute variables, we are not know-

ledgeable enough to say what it is.

Let Wi be one of several alternative relationships. Then,
letting {W |4} be the probability that W, 1is the actual

relationship, our uncertainty due to this insufficiency of data can

be represented as:

{VId,E_,_Z_,A} = J G(V - Wi(d,g_,z_)){wilé}
i

We see, then, that our uncertainty about the dependence rela-

tionship between profit v and the specified state variables 8

has two sources -- our uncertainty about the effects of the

unspecified variables 2z and our uncertainty about wi due to a

24
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lack of sufficient data:

{v]|d,s,8} = (G(v - W, (d,s,2)) (W, |4} {z]|s,s}
! ji i i

Clearly, we ignore both of these sources of uncertainty when
we assert in the abridged modeling strategy that profit is com-
pletely determined by the specified state variables s acting

through the model g

v = g(d,s)
That 1is, in making this assertion, we assume clzirvoyance both on

zZ given 8 and on Wi :

{z]|s,4} = 6(z - z;(8)) for some fixed z5(8)

and {Wilé} - (S(W1 - Wk) for some fixed W

Assuming this clairvoyance, we would have:

{v|d,s,4} = fz LG(V - W1<d’£'£)){w1|4} {zs,s}

[ Luv - Wy (d,8,2)) 8(W, = W) 8(z - z,(s))

‘2z

S(v - Wk(d,g.go(g)))
= o(v - g(d,s))
1 wiere g(d,g) = ¥, (dus,zo(8))
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But we do not possess such clalrvoyance; we are indeed
i uncertain about the dependence relationship between profit and
the specified state variables. Therefore, we should regard the

approximation made in the abridged modeling strategy:
{Vldyg_vb} = G(V - g(dvg))

as just that ~-- an approximation made for budgetary reasons.
Despite the similarity in appearances, we must not confuse the role
of the model g in the abridged modeling strategy with that of the
relationship W in the 1dealized modeling scheme. Unlike W , the
nmodel g does not represent a real-world relationship between
profit and the state variables, but is only a convenicat surrogate
for the probabilistic relationship that fully expresses our uncer-
tainty. The model g 18 not an objective description but rather a
subjective expression.

Several writers [14,17,26] have cuggested a probability-
space of models as a vehicle for expressing our uncertainty about the
dependence relationship. The use of a model space 1s attractive
because it allows us to employ Bayesian techniques to choose among
several alternative model forms in the face of real-world data.

If we use such a vehicle, we must be careful how we interpret
the probability assigned to each model in the space. As we have seen,
unless the specified set of state variables is complete, there can be

no "correct" model g that deterministically relates profit to the

state variables; therefore, it is meaningless to speak of the
probability that a particular model is the "correct' one or that
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it embodies the actual relationship.
However, there is a way that we can make a meaningful inter-
protation of the probability-space of models. Suppose that we are

uncertain about which of several relationships wy is the actual

R R o e W L - T
. peier
[

relationship between profit and the complete set of state variables

(E,oi) :

{v|d,s,z,4} =I 8(v - Wi(d,g,_z_){wi|4}
i

Then, we can write the conditional mean of v given d and 8 as:

(v]d,s,s) = I viv|d,s,s} I

- L’ ff5("‘wif“'?-’—z-)j{w1|°}{—z-|§-'°}

I {W IA} f v 8§(v - Wi(d,g_,g_)){£|§_,6}
i

v

{W |8} I W (d,;,_){z's,b}

)
L{w BERCD

where we have defined:

g(dys) = Lwi(d,g,i){ﬂg,b}

- <V'do§)wiob>
Thus, we can expand the conditional mean (vld,g,b) over a space of

models, where: the probability assigned to model g, is {W1|6}

the probabiliity that the actual relationship between profit and the

27
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complete set »f state variables is Wi , Wwhich we approximate

by 8y
Note that even if W, 1s the actual relationship between

profit and the complete set of state variables: v = Wi(d,g,g) ,

it is not true that g, 1s the actual relationship between profit
i

and the subset of state variables s : v # gi(d,g).

To say that there is no "correct'" model does not mean that
the choice of function g 1in the abridged modeling strategy is
unimportant. The choice of g partially determines the closeness

of the Dependence Approximation:

{vld,s,s} = 6&(v - g(d,s))
and tihereby affects the size of the discrepancy between the modeled
and authentic profit lotteries. Although no function makes the

approximation exact, we want one that makes it reasonably close.

An obvious candidate is the conditional expected value:
g(d,s) = (vld,s,s)

1.7 The Adequacy of Modeling in Decision Analysis

We perform modeling in decision analysis not for its own sake,
but rather to help us with the analysis. The adequacy of the model-
ing in a decision analysis must therefore be judged according to how

well it serves the purposes of the analysis.




In a decision analysis, we want to identify the optimal
decision -- that alternative whose corresponding authentic
profit lottery has the highest expected utility. The modeling is
adequate 1if it leads us to the optimal decision.

It is easy to see how modeling might lead us astray. The
approximations made in the abridged modeling strategy cause us to
misstate the profit lottery and, hence, to misstate the expected
utility corresponding to each decision alternative. The danger thus
exists that the modeling might cause us to mistakenly identify as
optimal an alternative whose authentic expected utility is not
highest.

This danger is especially great when much more modeling is
required to obtain the profit lottery for one alternative than for
another. For example, suppose that the two decision aiternatives
are to either invest or not invest in a particular project. Obtain-
ing the profit lottery for the first alternative may require
axtensive modéling while obtaining the profit lottery for the second
may require none (zero profit). In this case, the expected utility
for the first alternative will be misstated while the expected
utility for the second will not, and our decision analysis may then
identify the wrong alternative as optimal., (See Figure 1.3).

We can get an indication of the adequacy of the modeling in a
decision analysis by using the methodology presented in Chapter 2.
The methodology estimates the amount by which we misstate the

29
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Figure 1.3: Effect of Modeling on the Decision

4

Expected
utility
Modeled
Modeled
« — and
Authentic
Authentic
L 4)
Invest Not Decision
invest alternative

The "not invest" alternative is optimal, but the decision
analysis wrongly identifies the "invest" alternative as optimal

because the modelinz misstates its expected utility.
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authentic expected utility for each decision alternative because

of the modeling approximations. If the misstatement is shown to
be relatively large, we may presume that the modeling is inade-
quate.

But what can we do if we judge the modeling to be inadequate?
The most direct approach is to recalculate the profit lottery for
each alternative, trying to get it "closer" to the authentic

profit lottery by tightening one or both of the modeling approxi-

mations:

[}

1. {v|d,§JA} 8(v - g(d,s)) (Dependence Approx.)

2. {s|s}

|14

p(s) (Distribution Approx.)

Hoping to minimize the additional computational costs, we
might try to improve on these approximations without enlarging the
decision tree by choosing a different model g in the first approxi-
mation or by choosing different discrete values of the state
variables in the second. But these are only remedial measures and
We cannot be assured that they will get us closer to the authentic
profit lottery. Génerally, it is not because we have used the
"wrong" model or the "wrong" discrete values of the state variables
that the modeling is inadequate; rather, it is because we have been
forced by the budgetary constraints into making tenuous modeling

approximations.
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Hence, to get closer to the authentic profit lottery, we must

enlarge the decision tree. We can make the tree "taller" by
including additional state variables or "bushier" by making a
finer discretization of the aleatory variables or by redesignat-
ing some of the non-aleatory variables as aleatory. Or, acknowledg-
ing that we are uncertain about the dependence relationship, we can
replace the deterministic model g with a multi-point discretiza-
tion of the conditional distribution {vld,g,é}. Any of these
measures, of course, increases the computational cost of obtaining
the profit lottery.

The methodology presented in Chapter 2 provides us with an
indirect way of compensating for the inadequacy of the modeling.
The methodology yields an estimated correction term for the expected
utility of each alternative, so we can accept as optimal that
alternative having the highest corrected expected utility. However,
we cannot do so with complete confidence, because the methodology is

not exact.

Clearly, the adequacy of the modeling in a decision analysis 4

D ian o

depends not only on our modeling skill, but also on the computational

-

resources available to us. Although we usually like to think that

-

we can model any situation, we must be willing to concede the posei-~
bility that budgetary constraints may prevent us from successfully

modeling a particularly complex decision problem. In such a case,

s e, e

the results of the decision analysis may not be meaningful.
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CHAPTER 2

A METHODOLOGY: THE EFFECT OF MODELING APPROXIMATIONS

i ae dma i B0 o R

F P s

2.1 Introduction

B

In decision analysis, the profit lottery that we compute by

NPRE

modeling is not identical to the authentic profit lottery, which

we ideally want. The discrepancy between the modeled and authentic

ARLER

profit lotteries is due to approximations made in the modeling

process. The methodology developed here allows us to quantita-

tively relate the size of the discrepancy to the modeling approxi-

mations made in the analysis. {
As an overriding goal, I have tried to keep the methodology l 3

simple enough that it cam be employed quickly and eastly to check

the adequacy of the modeling in any decision analysis. g
Consider a decision problem defined by decision variable d

and outcome variable v. We would like to obtain the authentic

profit lottery {v|d,s}. To do this, we first specify a set of

state variables s on which we believe v partially depends. The
dependence of v on d and 8 can be expressed as a conditional
probability distribution {v|d,s.s}.

If we could assess the authentic distributions {s|s} and ,

{v|d,g,6} and 1if we could perform the necessery integration, we




would obtain the authentic profit lottery via the expansion

B B W o L T S Ry 7, T e Nt 1

equation:

YOS A YT SO AL i

(2.1) {v|d,4} = Js{v|d,_§_,é}{§_|d}

et et

However, this is not generally possible. Usually, we
cannot afford the time and effort to fully assess the distri-
butions nor can we analytically perform the required integration
over arbitrary continuous functions.

Consequently, we make two modeling approximations to simplify

our task. First, we assume that the probability distribution on s

can be represented by a discrete probability function p(s). I call

this the Distribution Approximation:
(2.2) {s|s} = p(s)

Included in the Distribution Approximation is the fixation of each
non-aleatory variable at a single representative value, in effect
approximating its distribution by a single-point discretization.
Secondly, we assume that the dependence of v on d and 8
can be represented by a deterministic function g. I call this the
Dependence Approximation:
v = g(d,s)

Jr, equivalently,

(2.3) {v]d,s,8} = &v - g(d,s))
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Having made these two modeling approximations, we obtain the
familiar block diagram representation of the decision problem and,
equivalently, the decision tree, as shown in Figure 2.1. We can

then easily compute the modeled profit lottery:

(2.4) {v]d,s} = ] &6(v - gd,8)) p(®

jw

But, because of the modeling approximations (2.2) and (2.3) ,
the modeled profit lottery {vld,b}m. from (2.4) is not identical
to the authentic profit lottery {vld,A} from (2.1).

In the methodology that follows, we shall quantitatively
characterize the modeling approximations and determine their effects
on the discrepzncy between the profit lotteries. We shall look at
the approximations one at a time, starting with the Distribution
Approximation.

To facilitate the discussion, I shall use subscripts for the
autcome variable v to denote the various stages of the develop-

ment of the methodology (see Figure 2.2):

v the modeled outcome variable

m

v = the outcome variable corrected only for
the Distribution Approximation

v_ = the outcome variable corrected for both
approximations (i.e., the authentic outcome

varlable, defined as the variable whose distribution

is the authentic profit lottery)
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Figure 2.1: Models of the Decision Problem

v = g(d,s) >

[.m

p(s)

Block Diagram

g(dl’sl)

3(d1’52)

g(dlis3)

g(dztsl)

= g(dz’sz)

= g(d2!s3)

Decision Tree
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Figures 2.2: Definition of Subscripted Outcome Variables

Q Vi ™ Modeled outcome variable
; {v_ld,8} = J6(v - g(d,8)) p(a)
: 8

N
f Correction for the
: Distribution Approximation:
{s|s} = p(s)

v " Outcome variable corrected only

for the Distribution Approximation

; {vx d,s} = J §(v - g(d,s)){s|s}
s
e y
;E Correction for the

Dependence Approximation:

{V|d,_s_,4} = §(v - g(d,_s_))

l

va = Authentic outcome variable

olasd = [ tvla,e,ehale)
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The goal of the methodology is to determine correction terms

- v
Av and Av for the mean and variance of the outcome variable:

a m
v v

Av = v - v
a m

We shall consider in Sections 2.2, 2.3 and 2.4 the case in
which there is only one state variable s and then, in Section 2.5,

we shall extend the results to the multivariate case.

2.2 Effect of the Distribution Approximation

Assume that the state variable s 1s scalar and assume for the
moment that v = g(d,s) exactly. We want to determine the effect
on the profit lottery of using the discrete distribution p(s) on
the state variable rather than the authentic distribution {s|s}.

For notational ease, let

n = the state variable whose distribution 1s p(s)

x = the state variable whose distribution is {s|s}

The choice of "n" and "x" emphasizes that p(s) 1s ulscrete
while {s|4)} 1s generally continuous.

We characterize the Distribution Approximation by the differences
in the mean and variance of x and n :

Ag =

B3< 3

v
As =

38




1f {s!b} is known, As and A; can be computed; otherwise,
they can be assessed directly.

Now, noting that v, " g(d,n) and v, gld,x) , we
expand both Vo and vx about n s» using the first three terms

of the Taylor Series [11] H

2.5) v, = g(d,m) + (@R @) + Yg"(d,7) (n-)’
(2.6) v, = g(d,n) + ' () (x-n) + YE"(d,n)(x-n)>
where

g'(d,n) = ;3‘2--i;(d,s)|s_t—1

- 82
g"(dsn) = =7 g(d,s)
8s

==
Then, we take the mean and variance of (2.5) and (2.6) (see
Appendix A.1) and eliminate third- and fourth-order terms with the ¥

following simplifying assumptions (see Appendix A.2) :

Third central moment = (s - ;)3 = 0

= = i v
Fourth central moment = (s - s)4 = 3 s2

As a result, we have:

2.7 T, = e(d,m) +k4"@D n !
@8 v, o= '@+ ige,m? 8

39 1




;‘i (2.9)  F, = gd,0) + g'(d,A)A8 + "(d,0) (x + 85%) B
E - g = E
g 2.20) v, = g'(@m? X+ k"dm’ ¢ + 2x80) :

| 1

3 = - V-
] + 2g'(d,n)g"(d,n) xAs

By subtractlon, we get:

1

@11) G - ) = g'(dma + kg"(d,m) (85 + As%) |

v v
(2.12) (vx - vm)

n

g' (d,m)2h8 + %g"(d,ﬁ)z[é;(§+;) R 2§A§€]
+ 28'(d,m)2" (d,R) xAs

These equations yleld the estimated correction terms for the

effects of the Distribution Approximation. Equation (2.11) 1is

exact for quadratic g and (2.12)

is exact for linear g.

2.3 Effect of the Dependence Approximation

We now consider the effect on the profit lottery of the

Dependence Approximation. To cecmpute the profit lottery {v[d,A}m ’

we assume that v 1s completely determined by d ane 8 :

v = g(d,s)

In most real situations, however, we believe that v also depends

on other less important, inspecified variables. Hence, by assuming

the determ’nistic relationship, we have suppressed whatever uncer-

talnty we may have about v for fixed values of d and s.
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We characterize the Dependence Approximation, then, by a

random variable e :

v =g(d,s) + e

Our residual uncertainty about v given d and s can be
expressed as a conditional probability distribution on e 5
{e|d,s,4}. For the purposes of the methodology, we assess the
conditional mean (eld,s,é) and variance v(eld,s,b).

Recalling that Ve is corrected for the effects of the Dis-

tribution Approximation, we have:
(2.13) Wy = g(d,x) + e = Vo +e

Taking the mean and variance of this equation (see Appendix A.3),

we get:
(2.14) (va - vx) = e
2 v = & 4+ 2
(2.15) (va - vx) e + cov(vx,e)

These equations yield the correction terms for the effects of

the Dependence Approximation.
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. v
We can calculate e , e and cov(vx,e) as follows (see

Appendix A.4) ¢

o]

(2.16) - Is(e|d,s,b){s|6}

- J [(V(eld,s,4)+ <e|d,8,b)2) {Blb}] 2

m<

(2.17)

(2.18) cov(v_,e) = IB [g(d,s) (el|d,s,%) {s|4}] - GxE

Note that each of these calculations requires the integration
of a function of d and s (e.g., <e|d,s,b)) over the authentic
distribution {s|4}. In most cases, we are unable to perform this
integration and must approximate it with a summation over the dis-
crete distribution p(s). This is just another utilization of the
Distribution Approximation; that is, for an arbitrary function

f(d,s) ,

Lf(d,s) (els} = Jee) p@

We can use the results of Section 2.2 to find correction terms for
these calculations. Letting:
z = f(d,x) and z = f(d,n)

we see that

;x - Isf(d,s) {s|s}

B Z £(d,s) p(s)

it o dah St 8 v oiian < ot
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Then, we expand z, and z about n , take the mean and sub-

tract:

(2.19) (G -27) = (408 + kE"(40) (As + AB%)

This equation, with appropriate substitution for the function
£(d,s) , ylelds the estimated correction term for each of the
calculations in (2.16) , (2.17) and (2.18) to compensate for

the use of p(s) rather than {s|4}.

Two special cases of the Dependence Approximation merit our
attention. As the first special case, suppose that e 1s indepen-
dent of s ; that is, suppose that our residual uncertainty about
v given d and s does not depend on s. Then, we need only

- v
assess e and e to characterize the Dependence Approximation:

(eld,s,8) = (eld,8) = &
Celd,s,4) = Yeld,s) = =

If e 1is independent of s , it is also indeperdent of v, » 80

cov(vx,e) = 0

Thus, when e is independent of s , the correction terms for the

Dependence Approximation from (2.14) and (2.15) become:
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(2.20) (V. -v) = e
v
(2.21) (v, - v ) = e

As the second special case, suppose that we find it easiler to
assess our residual uncertainty about the model g in terms of its
output V_ rather than its input 8. Then, we would assess (eld,vx,b)
and v<e|d,vx,b) instead of <e|d;8a6) and v(e|d,8,b> . In this
case, we can always determine (eld,s,4) and Yeld,s,8) by a

simple change of argument:

Celeonsy = Colamod ], i

V( e|d9995> H v(eld,vx,b)

vx-s(d,S)

However, suppose that our residual uncertainty abcut the model

is proportional to its output V_ in the following sense:

(eld,vx,b) = Av,

v
(e|d,vx,b) = B vx2

where A and B are constants. Such would be the case, for example,
1f {e|d,v,»4} were uniform or triangular over e with a base pro-

portional to Vo Then, we have (see Appendix A.5) :

-e- = \’eld,6> Lol A Vx
2, Vv -2
\é av(e|d'b> = (B+A)vx+Bvx
v
cov(vx,e) A o

b4




So, for this special case, the correction terms for the effects of

the Dependence Approximation from (2.14) and (2.15) become:

(2.22) (;a - x’rx) = A'\-rx

v 2 Y -2
(2.23) v, - v) (B + 24+ A9 v, + By,

X P

2.4 Combined Effect of Both Modeling Approximations

- v
The correction terms Av  and Av  for the combined effect of
both modeling approximations are simply the sums of the correction

terms for each approximation:

(2.24) v = (v, -v) = (v, = V) + v -v)
v v v v v v v
(2.25) Av = (va - vm) = (va - vx) + (vx - vm)
Effect of Effect of
Dependence Distribution
Approximation Approximation

(2.14), (2.15)

(2.11), (2.12)

In most cases, the deterministic model that we use to compute the
profit lottery is composed of several submodels. We can use the methodok~-
ogy sequentially for each submodel to determine the cumulative effect on
the profit lottery of the modeling approximations made in all of the sub-
models. For example, referring to the model shown in Figure 2.3, we
would first use the methodology to determine the correction terms AY
and A; for the intermediate variable vy. Then, considering y as an
input variable to the second submodel, we would use the methodology again
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Figure 2.3: Sequential Submodels

d
y
_8 y = g(d,s) > v = h(y) —-}_v -
As,As |. Ay, Ay Av, Av
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- \'
to determine the correction terms AV and Av for the cutcome

variable v.

Note that, if we use the methodology sequentially for several sub-
models, we need the modeled mean and variance for each intermediate
variable. Generally, the computer progrzins used to calculate the
modeled profit lottery can easily be arranged to report these quantities.

Going beyond the profit lottery, we can determine the effect of the
modeling approximations on the expected utility and the certain equiva-
lent by considering the utility function u(v) as just another submodel.
We want to find the effect on the expected utility u of using the
modeled profit lottery {Vld,b}m rather than the authentic profit
lottery {vld,A} as the distribution on input variable v. This is
the Distribution Approximation once again, which we characterize by the

- v
correction terms Av and Av., From (2.11) , we have:
- = K= = v -2
(2.26) Au = u'(vm)Av + %u"(vm) (Av + AVT)

Suppose, for example, that the utility function is exponential

with risk coefficient Y

-Yv
u(v) = 1 -e
u'(v) = Ye-‘YV
2 ~Yv

(]
<
©

u" (V)




Substituting into (2.26) , we have:

Ye-va(A;) - %Yz e;YVm (A; +A;2)

(>4
[
1]

R

Ye-va[A; - My (av + A;z)]

The corrected expected utility is then:

ua = u + Au

The corrected certain equivalent can be computed from the corrected

expected utility.

2.5 Extension to Multivariate Models

We can extend the methodology developed in the previous sections
to decision problems in which there are more than one state variable.
However, the methodology 1is practical only when the state variables are
mutually independent.

Consider the multivariate model of a decision problem showm in
Figure 2.4. Outcome variable v 1is dependent on decision variable d
and on the state variable vector s. The dependence 1s fully expressed
by the conditional probability distribution {Vldoggb}m, but is

approximated for purpouses of analysis by a deterministic relationship

g 3

{v|d,s,8} = &(v - g(d,8))

Also, the authentic distribution on 8 , {gjb} , 1s approximated by :

a discrete probability function p(s). 1

I~
wn
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Figure 2.4: Multivariate Model

: v = g(d,9) v

L]
o~
\u
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Having made these two modeling approximations, we compute the

modeled profit lottery:

{vld, 8}, = J8(v - 8id,8)) p(o)
8

We want to determine the discrepancy between this modeled profit

Y I VST S g me e s e

lottery and the authentic profit lottery:

{v]d,8} = f«:vm,g,u (s]8)
8

We develop the methodology as in the previous sections, looking
first at the Distribution Approximation and then at the Dependence
Approximation.

Let:

n = the state variable vector whose distribution

is p(s)

x = the state variable vector whose distribution

is {QJA}

1 We characterize the Distribution Approximation by the differences

in the mean and variance of x and n :

s As = x - n
N " %

v
‘ s = x - n

Then, we expand both v E g(d,n) and v, = g(d,x) about é_ and

take the mean and variance (see Appendix A.6), using simplifying

assumptions as before to eliminate third- and fourth-order terms (see
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Appendix A.2). As shown in Appendix A.6, if the state variables are

not mutually independent, the resulting expressions are not useful
because they require more information than we have about the distri-

butions on s. So, essuming that the state variables are mutually

independent, we have:

G =5 = Do @005, + % oy D)0,
(2.27) + %] Iry,(din)ds; e,
1]
v -2V
(Vx - Vm) = E.gi(daﬂ) Asi
- 2VYVY VV VvV _9ov _29
+ %E ggij(d,g) (xixj-ninj+xiAsj +xjAsi )
- -V - -
11 ke
- - VvV -
+ 25 §g1<d.g)gij (d,0) x,ds,

= $
where g (d,n) = g‘si—g(d.g)'g_

EX

2
8y (i) = —————gssfssj @9, .

EX

Equations (2.27) and (2.28) yield the estimated correction

terms for the effects of the Distribution Approximation.
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As & st ial case, suppose that there are juat two Independent

state variables 81 and g,. Then th: correction terms from

(2.27) and (2.28) reduce to:

- - - - N
(vx - vm) = 81(d!_&) Asl
. > ®1 terms
+ g, (4,) (88, +85, ) 4
- - N
(2.29) + 8,(d,n) s,
> ) terms
o, v =
+ 358,,(d,0) (88, +45,%) )
+ 52'812(&,5_)5152 } cross term
v v _
(v, - VY = g (4D s )
) -2l v v v vV -2 k 8,
* gy (don)7| Bey (xptmy) + 2y 881 0oy
_

- -V -
-2V
+ gz(d,g_) bs,
-2lv v v v -2 8
+ kgzz(d.g) Asz(xz-mz) + 2x2AB2 2
terms

- - V.
+ 28,(4,1)8,,(d,0) x,08, )

(Expression continued on next page)
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; - -2VV VV OV _av _

A (2.30) 81, (d»n) (xlx2 - o0, bx, A8, x, 18, )

1

] - - VY = -

q

g _ v oL >
+ 2822(4.9_)812@,9_) x,A8, A8,

1 - =g Ve -

1 + 28, (d,n)g,,(d,n) X, 88,

? - - v -

A

, Since the outcome variable is still a scalar, we handle the

Dependence Approximation exactly as in Section 2.3. We characterize

the approximation by a scalar random variable =

-

v=g(ds) +e

and assess the conditional mean and variance (e[d,s,é) and

V(eld,_s__,A). Then, the correction terms for the effects of the

Dependence Approximation from (2.14) and (2.15) are: :
(2.31) (va - vx) = e {
2.32 ) 3 p + |
(2.32) (va - vx) = o 2cov(vx,e)

- v
wvhere e , e and cov(vx,e) are calculated as in (2.16) ,

(2.17) and (2.18). §

If we use the discrete distribution p(s) 1instead of the %
authentic distribution {g|4} 1in the calculations of e , Z and §
cov(vx,e) » We can determine correction terms for these calculations { 1
as in (2.19). The multivariate counterpart of (2.19) 1is: { i

53



L e W s W .
o

Cocranitoay L sk o ool o g e ke oo it T i e i

- - . B = Ry
(z, = z) = z £,(dn)ds, +% ; £,,(dsn)08,

(2.33) +% ) 7 £, (d,n)ls, A8
1 j 1] 1)

Finally, the correction terms for the combined eifects of

both modeling approximations are:

AV'(‘-’a';m)'(‘-"‘-’) +

Effect of
Dependence

Approximation

(2.31),(2.32)

Effect of
Distribution

Avproximation

(2.27),(2.28)




CHAPTER 3

AN EXAMPLE: COMPETITIVE PRICING DECISION

3.1 Introduction

The decision making client plans to produce and sell a new home
appliance during the coming year. He knows that he will have one major
competitor and that, because the two competing appliances are virtually
identical in function, the share of the market each competitor captures
will be determined primarily by the relative selling prices. The
client is not sure what price his competitor will set.

Furthermore, he is uncertain about the size of the total market.
He believes, however, that it will depend strongly on the lower of the
two selling prices and on the general economic conditions during the
year.

Finally, uncertainty also surrounds the manufacturing costs. The
appliance contains an expensive raw material, but the client 1s uiicertain
how much the material will cost him and how much of the material is

required for each unit.

The client's decision is which selling price he should eet for his

appliance. Section 3.2 is a description of the decision analysis of
this problem and Section 3.3 is an application of the methodology of
Chapter 2 to determine how much effect the modeling approximations made

in the analysis have on its results.
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3.2 Decision Analysis of the Problem

Deterministic phase: In the analysis of this problem, we first

construct a deterministic model, as shown in Figure 3.1. The
decision variable 1s the selling »rice p and the outcome variable
is the profit s. Given p and the competitor's selling price y

the client's share of the market 2z 1s determined by the Market Split

Model:

( k

-’s(%) P>y
= - in(10)
z < where k In(1.5) 5.68
-k

1_;5(1) P Sy

\ P

See Figure 3.2 for a graph of the Market Split Model.
The Demand Model determines the total market size n given the

lower selling price x and an indicator of the general economic

conditions f :

_(_x_)
n= kfe 225 (millions of units)

See Figure 3.3 for a graph of the Demand Model.

The client's total sales q 1is then:

q=2zn (millions of units)

His total revenue r 1is:

r=pgq (millions of dollars)
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Figure 3.2: Market Split i‘rdel
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. S

z = -k where k = 1n(10)
%(2) (EJ> 1 1n(1.5)
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\
A
z
z = market share
1,04 p = selling price
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Figure 3.3: Demand Model
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The wanufacturing cost per unit v depends on the cost h of
the primary raw material, on the per unit usage factor w of that
material, on other variable costs b and, because of a volume di--

count on the primary raw material, on total sales q

V=b+ (.85 + .15¢59y p (dollars)

Then, given fixed costs t » the total cost

c 1is:
c=t+vq (millions of dollars)
Finally, profit s 1ig simply:
Ss=r-¢ (millions of dollars)

Next, we assign low, nominal and high values for the state vari-

ables, as follows:

State variable

Low Nominal High
Competitor's price: y ($) 180 200 250
Economic indicator: f 0.75 1.00 1.25
Material usage: w 1.10 1.25 1.40
Raw material cost: h ($) 30 40 50
Other var. costs: b (%) 30 40 50
Fixed costs: t ($106) 7 9 11

7




Using the deterministic model and the nominal values of the state
variables, we compute the deterministic profit for each of several
diiferent values of the decision variable p. The results are shown
on Figure 3.4 The highest deterministic profit of s = $6.97 million
corresponds to the decision p = 170.

We next calculate the deterministic sensitivity of the profit to
each of the state variables by varying each state variable through its
range while holding the others at their nominal values. The results of
the deterministic sensitivity are shown in Table 3.1. We find that pro-
fit is relatively insensitive to the material usage factor w and to
the fixed costs t. Profit is highly sensitive to the economic indicator
f , although the deterministically optimal decision is not affected by

f , as it is by the competitor's price y , the raw material cost h

and the other variable costs b.

Probabilistic phase: Because deterministic profit is relatively
insensitive to changes in w and t , we designate them as non-aleatory
and fix them at their nominal values. We designate *he remaining state
variables as aleatory variables and, in interviews with the client,
assess the probability distribution for each aleatory variable, as shown
in Figures 3.5 through 3.8. We then approximate each of these distri-
butions by a discrete distribution as shown in the figures to allow
assignment of probabilities to the decision tree. The competitor's price
y 1s discretized into eight steps, the economic indicator f into five
steps and the raw material cost h and the other variable costs b into

three steps each. The resulting decision tree has 360 "tips" for each
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Table 3.1:

Deterministic Sensitivity

Sensitivity to ¥y

y p* 8
180 150 4.75
190 160 5.94
200 170 6.97
210 170 7.96
220 180 8.90
230 190 9.70
240 190 10.53
250 200 11.25
Sensitivity to f

f p* 8

.75 170 2.86

.90 170 5.32
1.00 170 6.97
1.10 170 8.62
1.25 170 11.10
Sensitivity to h

h p* 8

30 160 9.22

35 160 8.04

40 170 6.97

45 170 5.90

50 170 4.84

63

Sensitivity to W

W p* 8
1.10 170 7.93
1.20 170 7.29
1.25 170 6.97
1.30 170 6.65
1.40 170 6.01
Sensitivity to b

b p* 8
30 160 8.96
35 170 7.91
40 170 6.97
45 170 6.03
50 170 5.08
Sensitivity to t

t p* )
7.0 170 8.97
8.0 170 7.97
9.0 170 6.97
10.0 170 5.97
11.0 170 4.97
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Figure 3.5: Probability Distribution on y

¥ = competitor's price
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Figure 3.6: Probability Distribution on f

f = economic indicator
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h = raw material cost
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Figure 3.:': Probability Distribution on b
Zigure J.:

b = other variable costs
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decision alternative.

Computations from the decision tree result in the modeled profit
lottery {slp,é}m for each of several different values of the
decision varistle p. We determine the relative desirability of each
profit lottery by means of the utility function. Interviews with the

client reveal that his utility function on profit s 1is exponential

with risk aversion coefficient .1 :

u(s) =1 - e-'1 ® for s in millions of dollars

Using the utility function, we compute the expected utility and the

certain equivalent of each profit lottery:

Zp - g {s]p,4} uls)

CE_(p) = u‘l(Gp) = -10 In(l - u)

Figure 3.9 is a graph of the certain equivalents. The most preferred
profit lottery, showm in Figure 3.10, corresponds to p = 160 and has

a certain equivalent of CEm = $6.47 million.

Informational phase: We calculate the probabilistic sensitivity

of the certain equivalent to each aleatory variable by holding the
variable to each of its values while allowing the other aleatory variables
to remain probabilistic. Table 3.2 chows the results of this probabi-
listic sensitivity analysis. As in the deterministic sensitivity
analysis, the optimal decision is not affected by the economic indicator
f. The optimal decision is most sensitive to the competitor's price Y.

68

= g S obionk o dbn i i - 5, G e i L o o)
P " ey R | i P RO T TN Sl AT PV L (W W Y g g




Probabilistic Results

Figure 3.9:

CE = certain equivalent ($million)
p = selling price

—_ S T T p

T Y T 1
130 140 150 160 170 180 150 200
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Figure 3.10: Modeled Profit Lottery for p = 160

s = profit ($million)
p = selling price

A
<
{slp,s},
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Table 3.2:

Probabilistic Sensitivity

Sensitivity to vy

y p* CE
180 150 4.69
190 160 5.89
200 170 6.91
210 170 7.87
220 180 8.81
230 190 9.61
240 190 10.42
250 200 11.13
Sensitivity to h

h p* CE
30 160 8.68
40 160 6.41
50 170 4,32

Sensitivity to £

£ p* CE
.75 160 2,51
.90 160 4.87
1.00 160 6.44
1.10 160 8.01
1.25 160 10.37

Sensitivity to b

b p* CE
32 160 8.25
40 160 6.63
48 170 5.11

Sl s
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Using tne results of the probabilistic sensitivity analysis, we

compute the value of clairvoyance for eoch aleatory variable, as

follows:
Aleatory variable Value of clairvoyance
Competitor's price: vy $378,000
Economic indicator: f 0
Raw material cost: h $ 46,000
Other var. costs: b $ 31,000

3.3 Effect of the Mcdeling Approximations

We can now consider what effect the modeling approximations made
in the analysis have on its results. The fundamental question we ask
here is how well each of the profit lotteries computed in the analysis
(e.g., Figure 3.10) expresses the client's beliefs about the future
consequences of his decision or, equivalently, how close the computed
profit lottery is to the authentic profit lottery.

The discrepancy betwveen the computed and the autnentic profit
lotteries arises from two types of mocdeling approximations: 1) the
apyroximation of the probability distribution on ezch state variable by
a discrete distribution (Distribution Approximation) and 2) the
approximatinr of the probabilistic relationship between variables by a
deterministic relationship (Dependence Approximation).

We can use the methodology developed in Chapter 2 to estimate the
discrepancy in the mean and variance of the outcome variable, profit,

caused by these approximations.
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We characterize the Distribution Approximation for each state

variable by the differences in the mean swd variance of the variable
using the two distributions, as shown in Figures 3.5 through 3.8.
These correction terms for all of the state variables are shown in
Table 3.3.

We shall trace the effects of the various modeling approximations
through the leterministic model shown in Figure 3.1, using the metho-
dology sequenttally for each submodel. Figure 3.1l shows the flow of

this sequential use.

Effect on market share 2z of the Distribution Approximation on competi-

tor's price y :

From the Market Split Model, we have for p <y :

1n(10)

z = 1- %(%J-k vwhere k = In(L.5)

Taking derivatives with respect to y ¢

2'(y) = *s(%)(’ﬂ . f'_'

-(k+2) i
k(k+1 -
‘.Y."(}') = _Li _S_z_L(l) j
P i
P
For p = 160 , these derivatives, evaluated at §m = 201.1 are:

2'(7) = 38.54 x 1074

") = -1.28 x 1074 )

73

|
i
3
E




e e

Table 3.3:

IR —— TSy e

Correction Terms for Dis~ribution Approximations

Competitor's

price

Economic

indicator

Raw material

cost

Other
variable

costs

Material
usage

factor

Fixed

coets

Authentic
y, = 201.10
y = 310.46
ya .~ 31\ -4
£ = 1.003

a
v
f = 0.025

a
h = 39.29

a
v
h_ = 57.99

a
b, = 41.33
v
b = 32.89

a
v_ = 1.25

a
v
w = 0.01

a
t =9.0
a
v
t =1.04

__yodeled
y, = 201.10
5 0
= 293.8
f =1.017
m

v

f = 0.020
m

h = 39.10
m

‘l

h = 54.19
m

b = 40.48
T

v

b = 31.77
m

w = 1.25
m

v

w =0

m

t =9.0

m

v

t =0

m

Difference
Ay = 0O

v

Ay = 26.66
Af = -0.014
v

Af 0.005
Ah = 0.19

v
Ah = 3.80
Ab = 0.85

v
Ab = 1.12
Mw =0

v
Aw = 0,01
At

v
At = 1.04




Figure 3.11:

Sequential Use of Methodology

Distribution

Approximation:

Competitor's

rice ,- ¥

& by, ty
Dependence
Approximation:
Market Split
Model

Effect on

Distribution
Approximation:
Economic

v
ind. AE, af

¥

Dependence
Approximation:
Demand Model

Effect on

Market share

Total market

oy 7l size _
Az, Az An, An
/
Distribution Cumulative Distribution
Approximation: effect on Approximation:
Raw material Total sales Other var. v
- v - v =
oSt AR, Ah Ad, Aq COSLS 5. Ab
Distribution Distribution
Approximation: Approximation:
Material Fixed coste
- v -
USaBe Ay, Mw At, At
YUYy
Cumulative Cumulative
effect on effect on
Profit _ ‘ Certain
bLs, As equivalent CE

75




Then, noting that A; =0 , we have from Equations (2.11) and
(2.12) the correction terms for the effect on 2z of tae Distribu-

tion Approximation:
5 2"(5 ) by
m

- = vV Vv
(;x - ;m) = z'(ym)2 by + % Z"(ym)2 A;'(ya*'ym)

v v v
Substituting from Table 3.% the values of Ya » Yp and Ay :

"o
(8.33) 2"(3,)
t o 2 "weo 2
(16.66) z (ym) + (5033.5) =z (ym)
these correction terms are:
-.0011

3.30 x 1074

Effect on market share z of the Dependence Approximation in the

Market Split Model:

The model asserts that the spiit of the market is determined
solely by the two selling prices. The client believes, however, that
the model does not fully represent his uncertainty about the market
split. For instance, he believes that other factors, such as adver-
tising and brand loyr.ity may also influence the market split, although

to a lesser extent than the relative prices.
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We characterize this Dependence Approximation by the random

variable ez

The client believes that the model is unbiased but that his residual

uncertainty has a standard deviation of about 8% of the value of =z

given by the model for z < % and a synmetric amount for z > 1,

Therefore, he assesses:

i}
O

<ezlp,zx,é>

Bo%  0%m sk

V(ezlp,zx,é>

1 2
150 1 -z) %z <1

Since the conditional mean is zero, es = 0 and cov(zx,ez) = 0.

v
Then, calculating e for z > Y% :

vy |
ez J(ezlprzx’5> {lep’b}
z
[ 1 2
- J 136'(1 - Zx) {ZXIP,A}
z
s 1 - )
150 (1 - 2z + ¢ )
X X
_ 1 - v - 2
= 150 (1 22x + z + z )

From (2.14) and (2.15) , the correction terms for the effect on

z of the Dependence Approxi.aation are:

z -2z) = & 0

(za zx) . =

! v v v

‘2 - 2) = e +2ov(z,e) = e
a X ? x' z z
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For p = 160 , the modeled mean and variance of 2z are:

v -4
z, = 38.45 x 10

So, for p =160 :

z = z 4 (zx - zm) = ,846

v v -4
z = z <+ (z_-2z) =41,75 x 10
X m X m

Then, the correctiin terms for the effect on z of the Dependence

Approxiratior are for p = 160 :

= v - -
(z, -z) = T;‘—(-)-(l—sz-f-zx-f-zxz) = 1.8 x 10°%

Combined effect on market share z of both approximations

The correction terms for the combined effect on z of both model-
ing spproximations are:

Az = (za -z ) + (zx - zm)

v v v + v v
= - -
Az (za zx) (zx zm)

For p = 160 , these correction terms are:

AZ = =-.0011 + 0 = -,0011

4 4

Az = 3.30 x 10°° + 1.86 x 107 = 5.16 x 10~
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Then, the estimated authentic mean and variance of z for p = 160
are:

- z =z + Az = .B4b

v v v =f
z =z 4+ Az = 43,61 x 10
a m

We see that, for p = 160 , the analysis overstates the mean of 2z
by about 0.1% and understates the variance of z by about 12% and

the sta. .urd deviation by about 67%.

Effect on market size n of the Distribution Approximation on the

economic indicator f

From the Demand Model, we have:

n = Mf e—‘§§§)

Taking derivatives with respect to f
. 225
Le

n'(f) =

n'' (£)

]
o

For p=160 , x = 160 so:

n' (f)

« 246 for all f
Noting that n"(f) = 0 , we have the correction terms for the effect

on n of the Distribution Approximation from (2.11) and (2.12) :
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v
Substituting from Table 3.3 the values of Af and Af
(nx nm) (~0.014) n (fm)

o -Km) = (0.005) n'(fm)2

For p = 160 , thece correction terms are:

(n, - um) = -.0035

v v -4
(n -~ nm) = 3,24 x 10

Effect on market size n of the Dependence Approximation in the

Demand Model:

The Demand Model claims that only the lower selling price and the
general economic conditions affect the size of the total market. As
with the Market Split Model, the client believes that other factors may
also influence the total market size and that, therefore, the model
understates his uncertainty about the market.

We characterize tl:is Dependence Approximation by the random

variable e 3
n

n = n +e
a x n
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it el i mthal. ofh o w

The client assesses his residual uncertainty as:

(enﬁx,f,é)

0

o .

(1.5 x 107°)(x - 120) £

e T

%@n|x,f,é)

Again, since the conditional mean is zero, En = (0 and

o e TSN PR IR SR

v
cov(nx,en) = 0. Then, calculating e
v v D
’ z = L e |x,t,4){£]4)

(1.5 x 10'5) (x - 120) J fz{flA}
£

(1.5 x 107) (x - 120) £

e ——
[}

A

v
(1.5 x 10°°) (x - 120) (£, + Eaz)

v
Substituting frem Table 3.3 the values of fa and fa :

% -5
| e = (1.55 x 10 7) (x - 120)

The correction terms for the effect on n of the Dependence Appioxi-

mation from (2.14) and (2.15) are:

(na - nx) = e =0

~
=]
1
=]

~
"

v v
e + 2cov(n ,e ) = ¢
n x'™n n

these correction terms are:



Combined effect on mark~t size n of both approximations:

The correction tenis for the combined effect on n of both model-

ing approximations are:

For p = 160 , these correction terms are:

-.0035 + 0 = -.0035

>
=}
(]

4 4 . -4

3.24 x 10 ' + 6.19 x 10" = 9.43 x 10

>
=
[}

The r “aled mean and variance of n for p = 160 are:

n_ = .250
m

v -4
n_=11.95 x 10
m

So, the estimated authentic mean and variance for p = 160 are:
n,=n, + An = 246
4

v v v "
n =n +An = 21.38 x 10
a m

We see that, for p = 160, the analysis sverstates the mean of n by
about 1.47 and understates the variance of n by about 44% and the

standard deviation by about 25%.
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Cumulative effect of the modeling approximations on total sales q :

Now, considering the output variables of the Market Split and
Demand Models, market share z and total market size n , as input
variables to the next submodel, we can determine the cumulative effect
on total sales q of the various modeling approximations. These
approximations are characterized by the correction terms Az , A; ,

- v
An and An that we have just computed.

From the model, we have:
q=2zn

This is an exact relationship, so there is no Dependence Approximation
for this submodel; we need worry about only the Distribution Approxi-

maticn on input variables z and n. Taking partial derivatives:

¢,(z,n) = n qzz(Z.n) =0

[\ ]

q,(z,n) = q.,(zn) =0

qzn(z ,n) =1

For p = 160 :

q,(z n) = .250
q,(z ,n) = .847

Noting that qzz and are zero, we have the correction terms for the

qnn

effect on q of tbe Distribution Approximation from (2.29) and (2.30) :
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(q, - q,) = qz(zm.nm)Az + qn(zm.nm)An
+ qun(zm.nm)AzAn
v v = = ‘ZAV + - - 2Av
(qx = qm) qz(zm.nm; z qn(zm.nm) n
- - 2 v v V +V A_z v A_z
+ qzn(zm.nm) (zana-zmnm 2 An +n8 z7)
— - - - v -
+ 2qz(zm,n )q, (z ) z On

m ‘zn m’ m
= = - = ¥ =
+ 2qn(zm.nm)qzn(zm.nm) naAz
Since there 1is no Dz2pendence Approximation:
Aq = (q,-9q) *+ (qx—qn)=(qx-q.m)
A v v v v v
q (q, =) + (qx-qm) (qx-q)
For p = 160 , these correction terms are:

-.0032

>
0
]

7.02 x 10

>
»a
]



The modeled mean ang variance of q for P = 160 are:

qm = 212

v

q, = 11.01 x 107
So, the estimated authentic mean and variance o total sales q
for p = 160 are:

. = q + Ag = 209

18.03 x 10~%

v
L]
L
+
>
a <
]

We see that, for p = 160 » the analysis overstates the mean of
q by about 1.5% and understates the variance of q by about

39% and the standard deviation by about 22%.
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Cumulative effect of modeling approximations on profit s

In the model, profit s is given as the following function of
sell:ing price p , total sales q , fixed costs t , other variable

costs b , raw material cost h and material usage factor w
s=pq-t-q (b+ .85hw + .15hw e“qw)
n Kqw
=q(p-b- .8hw - .15w e ) - ¢

where K = -1n(81)
This 1s an exact relationship, so there is no Dependence Approximation.

Taking partial derivatives:

s, = -9
Kqw

&, = -wq(.85 + .15 e )

s, = ~hw(.85+ .15(1 + Kq) «"%¥)

sq = P-b-hw(.85 + ,15(1 + Kqw) equ)

st = =1

sbb = 0

Shn = O

s, = -.15 Khg> (1 + Kq) e’V

= =-,15 Khw2 (2 + Kqw) equ

aq

By = 0
Sph = 0
Spy = 0
sbq = -1
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fpe ™ 0

81w " -q(.85 + .15(1 + Kqw) equ)

w

shq = -w(.85 + .15(1 + Kqw) equ)

She = O

swq = -h(.85 + .15(1 + 2Kq + Kqw + quzw) equ)
S ™ 0

sqt = 0

For notational compactness, let:

s(.) = S(p’am’;m'ﬁm’sm'tm)

Then, for p = 160 , the partial derivatives evaluated at the
modeled mean are:

sb(.) = -, 212
sh(.) = -.238
sw(.) = -7.072
sq(.) = 78.353
s._ () = .025

s (.) = 10. 500

qq

shw(.) = -0178
shq(.) = -1.053
swq(') = =31.509
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Noting that A; 3 Aw and At are all zero, we have the correction
terms for the effect on s of the Distribution Approximation from

(2.27) and (2.28)

(sx - sm) = sb(.)Ab + sh(')Ah + sq(.)Aq

v =
+ X sw(.)A; + % sqq(.)(Aq +Aq
+ sbq(.)AGAa + shq(.)AﬁAa
v \'
. x<5) = sb(.)zAb + sh(,)zAh + sw(.)2A5

+ sq(.)zAZ + st(.)zA\:; + *zsw(.)zAl'vz

+ %s ()% %q % 2q.09H)
aq a
2V YV vV v 9 Vv 2
+ 8y () (b, -baq + b _Aq"+ q_Ab")
2.V V vV VY 9 ¥V _9
+ ’hq( ) (hq, - hq +hAq” +qAh7)

+ shw(.)z(\l,la + D) aw + qu(')z(\‘,‘a + 032w
v o _ VA
+ Zsbq(.)shq(.)qubAh + sqq(')sbq(')quqAb
vV oo - v -
+ sqq(')shq(')quth + Zsb(.)sbq(.)baAq
B v -
+ Zsh(.)shq(.)haAq + st(.)shw(.).’\wAh
V4= vV -
+ st(.)sqw(.)Aqu + qu(.)sqq(.)quq
vV o V =
+ qu(.)sbq(.)qub + qu(.)sqh(.)quh
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Fhecause there i1s no Dependence Approximation:

N T e

coahanli

For p = 160 , these correction terms are:
AE = =.472

v
As = 5.797

The modeled mean and variance of s for p = 160 are:
s_ = 7.014
m
v
s = 11.317
m

So, the estimated authentic mean and variance of profit s for

p = 160 are:
s = 8 +0s = 6.542
a m
v v
s = sm +As = 17.114

We see that, for p = 160 , the analvsis overstates the expected
profit by about 7.2% and understates the variance by about 34% and

the standard deviation by about 197%.

Cumulative effect of the modeling approximations on the certain equ'va-

lent:

By treating the utility function as a submodel, we can determine
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the cunulative effect of all the modeling approximations on the certain

equivalent.

The utility functiou is;

u(s) = 1 - e-'l ¥

Taking derivatives:

-01 &

ls

u'(s) = .1 e u'(s) = -.0le '

For p = 160 , chese derivatives evaluated at ;m are:

u'(Em) = .0496

W) = -4.96 x 1073

The correction term for the effect on expected utility of the Distri-

bution Approximation from (2.11) 1is:

L - v 2
= ' '.l

Au u (sm)Aa + u (am) (As +As87)

For p = 160 , this correction term is:

Au = -.0383

The modeled expected utility for p = 160 is:

Gm = 4764

So the estimated authentic expected utility for p = 160 1is:
u = u +Au = .4381
a m
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This corresponds to a certain equivalent of:
CE. = vl @) = 5.76
a a *
The modeled certain equivalent for p = 160 1is:

CE_ = 6.47
m

We see that, for p = 160 , the modeling approximations have caused
the analysis to overstate the certain equivaient by abour $710,000
or about 12%.

By repeating this procedure for different values of p , we

find the following:

Modeled Est. authentic Overstatement
P CEm CEa by analysis
150 5.87 5.20 132
160 6.47 5.76 12%
170 6.40 5.67 132

After taking into account the effect of the modeling approximations, we

see that the optimal decision 1s still p = 160.

Effect of the mcdeling approximations on the value of clairvoyance:

If we apply the methodology to the probabilistic sensitivity
analysis, we can estimate the effect of the modeling approximations on

the value of clairvoyance. We find as a resul: that the analysie

slightly overstates the value of clairvoyance:
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__Value of Clairvoyance

Variable Moceied Est. authentic

Competitor's price: y $378,000 $327,000 |
Economic indicator: f 0 0 !

Raw material cost: h $ 46,000 $ 43,000 |
Other var. costs: b $ 31,000 $ 25,000 ‘
Summary l
|

We see that the methodology presented in Chapter 2 can be used to l

{

determine the effect on the profit lottery and on the certain equivalent
of the modeling approximations made in the analysis. The methodology
thus provides us with an indication of the adequacy of the modeling in a
decision analysis.

In this example, the modeling appears to be quite adequate, for the

methodology indicates that the modeling approximations do not affect the

optimal decision.
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CHAPTER 4

STOCHASTIC MODELS

4.1 Introduction

In the Preceding chapters, we have dealt solely with deter-
ministic models -- thoge mode.s that yield a unique value of
the outcome variable for fixed values of the state and decision
variables. We can now look at stocnastic models  -- those models
that yield a probability dis:, skution on the outcome variable for
fixed values of ti'z state did dacision variabiles,

We use stochastic models to represent situations in which
wWe are uncertaip about the dependence of the out-ome variable on
the state variables but cannot conveniently attribute this uncer-
teinty to additional ctate variables. Indeed, in these situations,
we often view the dependence relationship as beirg inherently
uncertain. Generally, we Possess some data (e.g., long~-run
frequencies) aLout the uncertain relationship to help us define the
stochastic model.

For example, we use the Bernoulli stochastic model to express

our uncertainty about the number of heads obtained in n tosses of

a coin because we find it easier to think of the outcome of a coin
toss as being inherently uncertain than to think of it as being
dependent on such extraneous factors as rotational forces and ’

surface characteristics.
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In tlis chapter, we shall extend the methodology developed
in Chapter 2 for daterministic models to stochastic models. The
methodology 1s uszful only for relatively simple stochastic

models, such as Bernoullil or small Markov models.

4.2 Extension of the Methodology

In a decision analysis, we ideally want the 2uthentic profit

lottery:

{V|d’5} = J{ {Vld,ggb}{_s_lb}

8
Suppose, however, that we use a stochastic model to compute the

profit iottery, as follows:
{v|d,8} = g{VId.g_.b}mp(g)

where the stochastic model is specified by the conditional proba-
bility distribution {vld,g,b}m. We see that the discrzparcy
tetween the modeled and authentic profit lotteries is due to the

two modeling approximations:

1. The approximation of the probability distribution on the

state variable vector s by the discrete probability function p

(Distribution Approximation):
(4.1) p(s) = {s]4}
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2. The approximation of the conditional probabllity

distribution on v given d and s by the stochastic model

(Dependence Approximation):

(4.2) {vla,s,8} = tv[d,s,8}

We want to quantitatively characterize these modeling approxi-
maticns and determine their effect on the profit lottery.

More specifically, letting L denote the authentic out-
come variable and vy denote the outcome variable of the

stochastic model, we want to determine the correction terms:

AN o= (V- V)

a y
v v v
o= (v, V)
Let us first define:
g(d,s) = (vyld,g,b) the conditional mean and
variance of the
£(d,s) = %&yld,g,é) stochastic model
Then, we can write:
(4.3) Y = g(d,s) +¢€
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where € 1s a random variable whose conditional mean and

variance are:

(eld,s,8) = <Vyld'§'4> - g(d,8) = 0

Yeld,s.s) = V<vy|d.g.6) = f(d,s)

Then, using g(d,s) as a refereuce deterministic model,
we can write the Cependence Approximation in (4.2) aas two

separate approximations:

tvold,s,a, = 6(v-8(d8) = {v [d,s,8)

We characterize the first of these approximations by the random

variable € as in (4.3) above .nd the second, as in Chapter

2, by the random variable e :
(4.4) v, = 8(d,8) te

vwhere the conditional mean {z|d,s,4) and variance *(e|d,s,4)

are directly assessed.

Next, employing the following notation from Chapter 2:

n = the state variable vector whose distribution is p(s)

|4

= the state variable vector whose distribution 1s {s|4}
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we characterize the Distribution Approximation in (4.1) by

the correction terms:

bs = x - n
v v v
bs = x - 1

We use four different subscripts for the outcome variable

(see Figure 4.1):

v = the outcome variable of the stochastic model

v = the outcome variable of the reference

deterministic model

the outcome variable corrected for the

<
n

Distribution Approximation

v = the authentic outcome variable

Then, we can write:

v_= g(d,n)

<
[}

g(d’_}_(_)

(4.5) v =g{d.n) + ¢ = % + £ i

(4.6) Va

gld,x) +e=7 +e

N

Taking the mean and variance of (4.5), we have: ;
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Figure 4.1:

Definition of Subscripted Outcome Variables

v

\,'

% = OQutcome variable of stochastic model

{vyld.d} - g{VId,g.A}m p(s)

Correction for:

{vld,g,d}m = 6(v - g(d,s))

v

b = OQutcome variable of reference

deterministic model

v ld,8} = ¥ g¢v - g(d,s)) p(s)
5 .

Correction for:

p(s) =

{s|s}

:

vx = Outcoms:

variable corrected for
Distribution Approximation

Glasd = [ 6ev - ga,0) as)
- 8

Correction for:

(v - 8(d,8)) = (v|d,s,4)

l

VvV =

" Authentic outcome variable

{vald,d} - L{vld.g.d}{glé}

98

i s R s




e e ARy TS I AN AT ST s mm m

v
vy + 2cov(vm.e)

But, because (e|d,s,4) = 0 , E=0 and cov(v ,e) = 0.

So,

4.7)
(4.8
where:

) v<€|d’!."5> p(e)

1 £(d,s) p(s)
8

Next, taking the mean and variance of (4.6), we have:

(4.10)

(4.11) + 2cov(vx,e)




where (see Appendix A.4) @

_ (
Ga2) e = (eld,s,8)(s]s}
8

( =
(46.13) : - J (Yeld,s,s) + <e|d,_s_,4)2){_s_|4} - e
8

(4.14) cov(v_,e) = I g(d,s)(e|d,s,s){s|s} -ve
8

Then, subtracting (4.7) from (4.9) and (4.8) from

(4.10), we have:

(4.15) ov = (Ga = x-ry) . (Gx - Gm) +e
v v v v v v v
(4.16) Av = (va - vy) = (vx - vm) + (e - €) + 2cov(vx,e)

v = v
where € , e , e and cov(vx,e) are calculated as in (4.9)

and (4.12) through (4.14) above and where (;x - ;m) and
(3x = im) are the correction terms for the effect of the Distri-
bution Approximation, given by (2.11) and (2.12) for the single
state variable case and by (2.27) and (2.28) for the multi-
variate case. The ~quations (4.15) and (4.16) above yield
the desired corresction terms for the outcome variable.

As a special case, suppose that the stochastic model fully

expresses our uncertainty about the dependence relationship:

{Vyld,g,b}m = {Va|d9_5_9b}
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{ Then,
<Va l d,s,8) = <Vy l d,s,8)

80,

(eld,g_,é) = (Va|d!§_’5> - g(d,s) =0

and, therefore,

e = 0 and cov(vx,e) = 0

Also,

Yeld,s,s)

V(vyld.g,6> = f(d,s)

and, therefore, from (4.13),

(4.17) . = I £(d,s){s|s} ‘

;& :

Then, from (4.9) and (4.17),

v v
(e-¢) = Jf(d.g_) 8ls} - ] £(d,s) p(s)
s 8

From (2:33), we see that this can be estimated as:

v v =. L& - ¥
(e - g) = E £ (d,m)ds, +% g f,,(d,n)ls,

(4.18)

b E j{fij(d,g)AsiAEj

R — T A ———_—
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So, for this special case. the correction terms in (4.15)
and (4.16) become:

(4.19) Av = (vx - vm)

v v v v v
(4.20) Av = (vx - vm) + (e -~ ¢)

4.3 Exanplc: A Came

Consider the following game: We draw one ball from an urn
containi~.g 25 balls that are numbeced consecutively from 1 to
25. Letting n be the number on the drawn ball, we then flip
a thumbtack n times. Finally, letting r be the number of "heads"
(point up) obtained, we receive a prize of v dollars, where v = r2.
Should we pay $25 to play this game? Our utility function on

dollars is exponential with risk aversion coefficient Yy= .04 :

awy & g = e-.Obv

We use the Bernoulli stochastic model to analyze this game.
(See Figure 4.2) The state variables are n » the number oi flips,
and p , the long-run frequency of '"heads" in meny flips of the
thumbtack. Given fixed values of these state variables, the

Bernoulli model yields the following probability distribution on

the number of "heads" r :

{rln,p.é}m - (:)(p)r(l-p)n-r
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Figure 4.2: Analysis of the Game

J»

Bernoulii

Model

function

= number on drawn ball

= long~run frequency of heads
= number of heads in n tosses
= monetary payoff

= utilicy
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For the purposes of analysis, we use the following Jdistributions

on the state variables:

% ne1,2,...25
{nfs} =
0 otherwise

{p|4}m = &(p-p, vherep,=.5

Using a computer, we calculate the resulting probability

distribution on r :

{rlé}m a g g {t|n,p,6}m{n|6}m {p|6}m

- 5 5(2)(.9“

Next, we calculate the corresponding distribution on v :
{v|4}m - Z {v|r,4}{r|6}m

2 N
- z 8(v-r ){r|4}m 3

Finally, we compute the expected utility and the certain equivalent

of the game:

Gm - E {v|4}m u(v)

=3 =
CEm u (um)
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We find that:

- v

E r = 6.50 r = 16.25
m m
N v

[ v = 58.50 v. = 3586.05
m m
u = 0.6469
m

(2]
]
n

26.03

The analysis indicates that we should be willing to pay up to

$26.03 to play this game.

We can now ask: What modeling approximations have we made
! in this analysis and what effect do they h:ve on its results?
In this case, there is just one approximation -- the use of a
] fixed value Py = .5 for the long-run fraction of '"heads"
instead of a probability distribution on p. Suppose that we

assess the following mean and variance for p :

P by = s

Then, we characterize the approximation by the correction terms:

bp = 0

v
bp = .01
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We define as the reference deterministic model the conditional

mean of the Bernoulli 1y lext'ng:
g(n,p) = (rln,p,8) = np

f(n.p) = Xxin,p,8) = np - p)

Taking partial derivatives of g(n,p) :

g, = P B = O
™ ™ 0

& = Eop
Bp = 1

- v -
Then, noting that An » On and Ap are all zero, we have from

(2.27) and (2.28) :

% 2 2Av -=2VYV VYV
(r, - r) g,(n,p)"4p + 8qp (MP) (P10 - p n)

-2V vV
= n"Ap + ndp

-2 V.V
= (n” + n)Ap

Because the Bernoulli model fully expresses our uncertainty

about the number of "heads" glven n and p , we can use the

results of Section 4.2 for the special case. Taking partial

derivatives of f(n,p) with respect to p :
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Then, from (4.18), we have:

v oV - WY
(e ~¢g) = *zfpp(n.p)!\p
-
= -n/p

Se, from (4.19) and (4.20), we have:

Ar = (rx - rm)

v

v v Vv -2 vV -
Ar = (rx = rm) + (e - ¢) (n” + n - n)dp

Substituting, we find that:

Ao = 0 - £.50

v
Ar = 2.08

H< n

= 18.33

So, the fixation of p has no effect on the expected value of r

but causes the analysis to understate its variance by about 11%

We can now determine the effect of the approximation on our

winnings v. Taking derivatives of v = r2 :
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Then, noting that Ar = 0 » we have from (2.11) and (7.12):

- - Vv
Av = kv"(rm)Ar
v

= Ar

A "2Av+!5v"""'Avv+v)
v v (rm) T (rm) r(ra rm
- 2.7 v v v
= 4r "Ar + 2Ar(2r +Ar)
m m

Substituting, we find that:

Av = 2.08 Ga - 60.58
v v
Av = 495,37 va = 4081.42

We see that the fixation of p causes the analysis to understate
both the expected value and the variance of v by about 3./ and
12X , respectively.

Finally, we can determisc the effect of the approximation on

the expected utllity and the certain equivalent. Taking derivatives

of the utility function:

u' o= .04e 04V

W = -.0016 ¢ —*04V
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Then, from (2.26), we have:

= o = o v -
Au = u'(vm)Av + %u"(vm)(Av +Av2)

-.04v

a v =
- .04 e %%V (A - .02(av +AV2))

Substituting, we find that:

M = -0.0305 Ga = 0.6164

And:

CE, = -251n(l - Ga) = $23.96

So, we see that the fixation of p causes the analysis to over-
state the certain equivalent by about 8.6% and that we should

not be willing to pay $25 to play the game.

It is interesting to see how the misstatement of the certain
equivalent caused by the fixation of p varies with the degree of
our risk aversion. Figure 4.3 showe the percentage misstatement
of the certain equivalent as a fun.tion of our risk aversion
coefficient Y for the game played with 5 , 15 and 25 balls
in the urn. Note that the misstatement of the certain equivalent
may be either positive or negative, depending on our risk preference,
and that the degree of misstatement does not necessarily vary mono-

tonically with the risk aversion coefficient.
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Figure 4.3: PRisk Sensitivity of Misstatement of CE

¢ = fractional misstatement of certain equivalent
due tc fixation of p = ACE/CEa

Y = risk aversion coefficient |

N = number of balls in the urn




CONCLUSION

As we have seen, the role of modeling in decision analysis
is to help us obtain the authentic preiit lottery by simplifying
our assessment task. We think of the models in decision analysis,
then, as subject:ive expressions of our uncertain understanding of
the world rather than as objective descriptions of reality.

We can now answer the questions about modeling that we
raised in the Introduction.

First, what is "goodness" in a model and can we quantify 1t?
Becausz we tiaink of a model as an approximate expression of our
uncertainty and not as a description of the real-world, an index
of realism would not provide a meaningful measure of goodness.
Rather, the measure of goodness that we want is how well the model
represents our uncertainty about the dependence relationship between
outcome and state variables. We can quantify this measure of good-
ness with the random variable e :

v = g(d,s) +e .i

Then, we cen use the methodology of Chapter 2 to show how the good-
ness of the model arffects the results of the decision analysis by

determining its contribution to the correction terms on the prcfit |

- v
lottery 4v and Av.




Next, how should we choose among alternative models? Using

the measure of goodness defined above, we should choose among

competing models according to how "clcse" they get us to the

authentic profit lottery. When our state of information about

the decision environment includes a large amount of data, we can

use a probability-space of models to help us choose among several

alternative model forms, being careful that we meaningfully

interpret the probability assigned to each model in the space.

(See Section 1.6.)

Finally, how should we decide when to do more modeling? The

reason that we use modeling in decision analysis at all is that we

Judge the directly assessed profit lottery to be so "far" from the

authentic profit lottery that it is worthwhile spending the time

and effort to reduce our secondary uncertainty. Likewise, our

decision to do more modeling should depend on whether or not it

is worth *he additional effort to c:t even "closer" to the authentic

profit lottery.

We use the concept of the value of perfect information to help

us lecide when to collect more data. The analogous concept that we

need to help us decide when to do more modeling is not the value of

perfect modeiing but rather the value of obtaining the authentic

profit lottery. This value is the most we should pay to completely

resolve our secondary uncertainty through further modeling. Unfor-

tunately, it is exceedingly difficult to exercise this concept, since
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to do so, we must assess the joint distribution on the authentic
certain equivalents for all decision alternatives.

We can, however, get an indication of the value of additional
modeling by using the methodology of Chapter 2 to estimate the
difference between the modeled and authentic profit lotteries. The
greater the difference, the greater the presumed value of additional
! modeling. Furthermore, we can use the methodology to indicate vwhere
more modeling would be most effective by showing the contribution of

1 each part of the model to the discrepancy in the profit lotteries.
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APPENDICES

Appendix A.1l: Effect of the Distribution Approximation

This appendix supplements Section 2.2, pp. 39-40.

For notational ease, let:

g(.) = g(d,n)

s = (g - 5)3 » third central moment

-4
(s - 8) » fourth central moment

<]
n

We characterize the Distribution Approximation by:

bs = x - n
v v v
bs = x - n

We expand L g(d,n) about n :

(1) v o= gD +') (- +ig"() (- m?

Taking the mean:

(a.2) V= g() +k4"()

Squaring (a.l) and taking the mean:
2

+28()8' () (n - 1) + g()g"() (n - my>

+8'()g"() (n-m)°
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v 3
+8()8"()n + g'(.)g"(.) n

Squaring (a.2) :

@a v = g0? + 2 1w g(0g") b

Subtracting (a.4) from (a.3) :

M 3
@ vy o= @O R rag"(0 (- WD)+ g (0g"()

To simplify this expression, we assume the following (see Appendix
A.2) :

n = (
b v
n = 3 n2
Then (a.5) becomes:
v v v
@.6) v o= g'(.)% n 4?02

Similarly, we expand e g(d,x) about n :

@7 v gD +8'() (x-m) ") (x - )2

Taking the mean:

@8 Y =)+ ) R-m+() (x - )’
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Squaring (a.7) and taking the mean:

2 os gl ? - D e of -
£ 25(08' () (x - B 4 g(IE"C) (- D)
+ g (") x - )
(a.9) Zf=g«f+ymﬁm—ﬁf+wmfz:37

+25(8' () (-7 + g()g"() x - )

+g' (08" (x-m>

Squaring (a.8) :

2 2

@1y 52 = g+ e? G-t ) c-

F25(0g' () (G- W) + g x -

F g (0g"() G-m x -
Subtracting (a.10) from (a.9
(a.11) l'rx = g'(.)z[(x -0 - G- E)Z-J

21 =3 22
+ %" () L(x"n) - (x - n) ]

+ycmwokx—a3—&—ﬁ>u—ﬁﬁ] |
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Note that:

(x - n) = As

x-m - (x-®+ G-’ - x + 482

———tr———

3

(x - 5)3 - ((x = x) + (x - n)) - x4+ 3;A§+AE3

Y w

F

= & = - 3 s = =
(x - n)4 = ((x - x) + (x - n))4 = + 4xAs+6;Asz+ As4

»

Substituting into (a.8) and (a.11) :

8(.) +8'(.)05 + %g"(.) (eraad)

24

(a.12) v,

4 3 _
' (2 X+ %" () 2x - X2 4 4oks + 4 x452)

n

v
fa.l3) Y.
3 v _
+g'()e"(.) (x + 2xA8)

Again, we use the simplifying assumptions (see Appendix A.2)

3

X = 0
[N
X . 3 ;2

Then, (a.13) becomes: :
@14) v o= g'()% x 41202 + 2sd)

+ 28" (.)g"(.) xAB
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In summary, we have:

Vo= g0 +%"() m

m
v g (0f n 4 ngn()? v
v, * 8(.) +g'()0s + kg"(L) (x + 480)

v v -
v = g'(-)2 x + lzg"(.)2 (§2 + 2§As2)

+ 2g"(.)g"(.) ¥ (a.14)

These equations are shown as Equations (2.7) through (2.10).

By subtraction, we get:

(Vo= V) = g'(.)8s + 4g"(.) (48 +4sd)
v v 2.V 2l .v.v v vV -2
(vx - vm) = g' (L) 88 + X" () |As(x + n) + 2xAs

-4

+ 28" ()g"(.) xAs

These equations yield the correction terms for the effect of the
Distribution Approximation and are shown as Equations (2.11) and

(2.12).
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Appendix A,2: Simplifying Assumptions

In Chapter 2, we assessed correction terms for the mean and
variance of the state variable and calculated the resulting correc-
tion terms for the me:n and variance of the outcome variable. For
several linked submodels, we saw that the output variable of one
submodel becomes the input variable of the next and that we can
sequentially calculate the correction terms for each intermediate
variable.

Clearly, since we want to deal only with the mean and variance
of each variable, we must eliminate all terms of higher order. In
developing the correction terms for the effect of the Distzibution
Approximation in Appendix A.l, we encountered the third and fourth
central moments of the input variable and eliminated them by assuming

the following:

G = B - 0
(s - 3)4 = 3 ;2

If we know only the mean and variance of a variable, we cannot
reliably estimate its third central moment, which is a measure of the
skewness of the distribution about the mean. We cannot even predict
its sign. Therefore, in the methodology, I make the assumption that

the third central moment is equal to zero, which 1s true if the dis-

tribution is symmetric.
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On the other hand, we can estimate the fourth central
moment 1f we know the variance; hoth are measures of the dis-
tribution's dispersion about the mean. In fact, it turns out
that the fourth central noment is proportional, or nearly so, to
the square of the variance for many of the named distributlons.
(See Table A.l) The ratio of the fourth central moment to tle
variance squared ranges from 1.8 for the uniform distribution
to 9 for the exponential, but many of the distributions have
ratios of about 3. Therefore, I assume for the purposes of the
methodology that the fourth central moment is equal to three times

the variance squared.




Distribution
(parameters)

1. Uniform (a,b)

a b
2. Triangular (a,b,c)

A

a b c
3. Trapezoidal (a,b,c)

h [‘_~—--1ch

a b
4, Normal (u,0)

5. Beta (a,b)

6. Beta with b =2 a

7. Exponential (A)

8. Laplace (1)

9. Gamma (a,B)

10. Binomial (n,p)

11. Poisson (y)

Table A.l

L2

Ratio of the fourth central
morent to the variance squared

for any a,b

wio

== for any a,b,c

12 (1+8c+9c+8c+c?) g
=5 I or any
(1+8c+18c"+8c7+c ) a,b

3 for any u,0

2 L
(b+2) (b+3) a(a-b) ;

3 (b+l)
(b+3) ]
9 for any A
6 for any X 4
3+-1- £ 8
5 or any ‘
3 -‘% + S j
n"p(1-p)
!
3+ =
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Appendix A.3: Effect of the Dependence Approximation

This appendix supplements Section 2.3, pp. 40-41. We

characterize the Dependence Approximation by e :
(b.1) W = +e
Taking the mean:

(b.2) L + e

Squaring (b.1) &nd taking the mean:

(b.3) v2 = v2.+e2 +2ve
a x
Squaring (b.2) :

=2 _ =2, = - -
(b.4) v, v + e° + 2vxe

Subtracting (b.4) from (b.3) :

v v v
(b.5) v, = Ve + e + 2cov(vx,e)
So, from (b.2) and (b.5) , we have:

(\-ra-\-r) - e

~
<
]
<
'~
]
<

+ 2cov(vx,e)

These equations yield the correction terms for the effect of the

Dependence Approximation and are shown as Equations (2.14) and
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Appendix A.4: Calculation of e , e and cov(v,e)

This appendix supplements Section 2.3, p. 42. We can calculate

= v
e , e and cov(vx,e) from the assessed conditional mean and

variance of e , (e|d,s,s) and ‘Qe|d,s,4) as follows:

e = (eld,s)
(c.1) - I (eld,s,s){e |8}
s
:2—- <e2|d,b>
- f (e2|d,s,6>{s|é}
s
= f ( %@|d,s,4) + (e|d,s,4>2){s|é}
8
e = Yeld,s)
2 -2
- e” - e
(c.2) - I (Celd,s,s) + <e|d,s,6>2){s|4} = e
8
ve =

(vxe|d,5>

f I g(d,s) e {s,e|d,s}
8

e

I,g(d,s){s|d,b} f efe|d,s,s}

8 e

I g(d,s) (eld,s,s){s|s}
8



(c.3)

COV(V ,e - ve - ;E
V(xo) % »

- Jr 8(d,s) (eld,s,s){s]s} -7Ve
8

Equations (c.l) , (c.2) and (c.3) yleld the required calcula-

tions and are shown as Equations (2.16) through (2.18).
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Appendix A.5:

Special Case of the Dependence Approximation

Th’s appendix supplements Section 2.3, pp. 44-45. Suppose

that we assess:

Then:

(eld,vx.é) = Av

v(e|d,vx,b) = Bv

X

2
x

e = {e|d,s) = J (eld,vx,é){vx|d,b}

(d.1)

e? = (e?]a,s)

(4.2)

Yeld,s)

v
= I Av_ {7 |d,s}
X X
v
Av
X

[

2
' (= |d,vx,4){vx|d,4}

[
= |( %@|d,vx,é) + (eld,vx,é)z){vxld,é}
v

[ .
= (B v 2, sz 2){v |d,A}
g X x X
2, 2
(B + A7) v,
2 -2
=e° - e
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Jv Jevxe{vx,eld,b}

v {v |d,4}[e{e|d,v 4)
vx X e X

vax{vx|d,b}(e|d,vx,b)

[Av2w|mu
v X X

Av 2
X

cov(vx,e) = v

(d.3)

Then, the correction terms for the effect of the Dependence

Approximation are:

(va - vx) = e = A v,

v 2.V -2
e + 2cov(v ,e) = (B+ 2A+A") v + B v
X x X

These equations are shown as Equations (2.22) and (2.23).
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Appendix A.6: Multivariate Case

This appendix supplements Section 2.5, pp. 50-51. Assume that

there are N state variables. We use the following matrix notation:
t 8 ,n and x are N-dimensional column vectors

w = Vg(d,g_)'8 =5 »° an N-dim. row vector

W = ‘_vl_T‘_i_ » an N x N matrix

3 1 = an N-dim. colummn vector of all 1's

L = llT s an N x N matrix of all 1's

£2(d,s)
Gij = T3s.88

13 ls=n

C = [Gij]" an N x N matrix

G:in = [Gij(ni - ;i)(nj -

j)] » an N x N matrix

G:x = [Gij(xi-ﬁi)(xj--J)] » an N x N matrix ]

G:cov(n) = [Gijcov(ni,nj)] » an N x N matrix ]

G:cov(x) = [Gijcov(xi,xj)] , an N x N matrix

G:As = [Gij A;:I.A;j] » an N x N matrix

Note that, for a matrix M , lTM 1 18 the sum of all of the

elements of M.
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Also note that:

(E_—E_)TG(E—Q) = 1" Ginl , a scalar

Q
1=

= G:cov(n)

Q
»®

= G:cov(x) + G:AE_

We characterize the Distribution Approximation by:

bs = x - n

v
n

&
]
I <
]

) We expand v = g(d,n) about i 2
E (e.1) v = g(dn)+wln-n)+%1 Gnl
Taking the mean:

(e.2) ;m = g(d,i) + L lT G:cov(n) 1

Squaring (e.l) and taking the mean:

vm2 = g(d,'ﬁ_)2 + _]__T Winl+¥ _]_._T G:inLG:in1l
+2g(d,n) w (a - n) + g(d,n) 17 Gin 1
=2 T
*+w@-n1l 6Gnl
(e.3) vmz = g(d,_t;_)2 + lT Wicov(n) 1 + % lT G:n L Gin 1

+8(d,0) 1’ Geov(n) 1L+ wn - 1) 1" Gin 1
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Squaring (e.2) :

(e.4) ol = 8D’ +% 17 Gicovin) L Gicoven) 1 .

+ g(d,ﬁ) lT Gicov(n) 1
Subtracting (e.4) from (e.3) :
Y T
(e.5) Vo ¥ 1 Wicov(m) 1

+Y% _]_.'r I-G:g L G:n - Gicov(n) L G:cov@] 1
L

ty@-m 1 Gl

Now, we expand v " g(d,x) about i s

(e.6) v, ¥ g(d,n) + v (x - n) +% lT Gix 1

Taking the mean:

(e.7) v, = g(d,n) +whs +% 17 [G:cov(i) + G:A§_] 1
Squaring (e.6) and taking the mean:
sz = g(d,'r-_x)2 + lT Wix1l+Y lT G:x L Gix 1

+28(d, ) W (x - 1) + g(d,n) 17 G:

]
|

tva-m1lexl
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(e.8) v o« g,m?e+ 1

Jr=
>
0
o
<
7~~~
|%
S’
+
=
=
o1
| S|

+ 2g(d,n) whs + g(d,n) lT [G:cov(_:_:_) + G:Aé] 1

Squaring (e.7) :

(e.9) v? o= gamie 1T was 1

+ i lT [G:cov(i) + G:AE] L [G:cov(i_c.) + G:Aé]l

-
+ 2g(d,n) wAs + g(d,n) 17 [G:cov(i) + cméj;

+ wis lT [G:cov(i) + G:Aé] 1

Subtracting (e.9) from (e.8) :

v
(e.10) ¥ = lT Wicov(x) 1 + % ;_T G:x L G:x 1

-3 lT [G:cov(lc) + G:AE]L [G:cov(g) + G:Aé] 1

T}_ =

+v |[(x - i) Gix 1 - ps lT [G:cov(z) + G:Aé] 1

Subtracting (e.2) from (e.7) and (e.5) from (e.10) , we

obtain the estimated correction terms for the effect of the Distri-

bution Approximation:

(e.11) (\-rx - ;m) * whs + k% lT [G:cov(i) - Gicov(n) + G:AE] 1
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v
L - l_l_T Wicov(x) -~ W:cov(_g)]l

~
<
!
<4<
~
R

+ le(G:_}iLG:lc_-G:_rlLG:B_

- [G:COV(_}E) + G:AE]L [G:cov(i)-O-G:A_E_]
(e.12)

+ Gicov(n) L G:cov(n) | 1

+z((£-£>_1. Gxl-@-m1 Gnl

- As lT I:G:COV(E) + G:A_;_] _];)
These equations are not useful because they require more information
than we have about the two distributions on 8. However, when the
state variables are mutually independent, these equations reduce to
a more useful form. Letting 8y and gij denote the partial de-
rivatives of g and letting ; and ; denote the third- and

fourth central moments, we have for mutually independent state

variables:

(;x = ;m) ~ Zgi(d':é)A;i + % zgii(d’i)A;i
i i

(e.13) +3) 7 gij(d,g)AaiAE

3
13
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i
-2% v va2 3 -V -2
+% Zgii(d,g) (g%, g+ 0y +ix As + bx A8 ")
—2NV NV VvV VvV _ 2V -2
+ % Z 2 gij(d,g) (xixj--ninj%ciAsj ﬂjASi )
1 J#i
. - Y . vV - -
2 2 gij (d’ﬂ)gik(d’ﬂ) (;ixiAsj + XiASjASk)
3 ke
- -3 3 v -

(e.14) +

+

o~ P

- - v -
+7 7 e, (d,mg,,(d,n) 2x,48
{441 1 13 17
To eliminate the third- and fourth-order terms, we apply the

simplifying assumptions (see Appendix A.2)

n & Vo
[ |
o

v
= 3 s2

Then (e.l4) becomes:

v v -2V
(v, - v = } g, (d,n) "As,

m
-2V V VV VvV _ 9 vV -2
+% ) ) g (dn) (x,x,-nn +x As. " + x,88,7)
(e.15) T Sk R S R s I
= - v - -
14 k#
2

+ z 2 7 _) 2 _) v A-
g, (d,n)g ,n) X As
o b Dt 1°°3

Equations (e.13) and (e.l1l5) yield the estimated correction terms

for the effect of the Distribution Approximation for independent state

variables and are shown as Equations (2.27) and (2.28).
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